
Practical Statistical Evaluation of Critical
Software

Peter Bernard Ladkin

University of Bielefeld and Causalis Limited

Bev Littlewood

City University London

Abstract In 2010, Rolf Spiker approached one of us with a query from a client
concerning advisory material in IEC 61508 on the statistical evaluation of soft-
ware. We realised that there is a dearth of practical guidance for those who wish
to evaluate critical software statistically. We believe statistical evaluation of soft-
ware is an increasingly important assurance technique. We commence with a brief
introduction to some of the simpler statistics and then consider discursively the is-
sues which arise during evaluation.

1 Introduction

It is sometimes said that “software failures are ‘systematic’ and therefore it does
not make sense to talk of software reliability in probabilistic terms”. It is true that
software fails systematically, in that, if a program fails in certain circumstances, it
will always fail when those circumstances are exactly repeated. Where then, it is
asked, lies the uncertainty that requires the use of probabilistic models and meas-
ures of reliability?

There are two main sources of uncertainty. First, there is uncertainty about
which inputs, of the many possible inputs the software could receive, will result in
failure (of the software to fulfil its intended purpose) when executed. Second,
there is uncertainty about which inputs the software will in fact receive in the fu-
ture as it executes: these inputs will depend upon the external operating environ-
ment, about which there will be uncertainty.

It follows from these two sources that there is uncertainty about when a pro-
gram will receive an input that will cause it to fail. Failures thus form a stochastic

© Peter Bernard Ladkin and Bev Littlewood 2016.
Published by the Safety-Critical Systems Club. All Rights Reserved

process (a random process) as time progresses during execution of the software.
There are some simple probabilistic models for such failure processes (as well as
some complicated ones). We describe these briefly and show how they can be
used to obtain quantitative probabilistic measures of software reliability.

Because software failures occur randomly, it follows that many of the classic
measures of reliability that have been used for decades in hardware reliability are
also appropriate for software: examples include failure rate (for continuously oper-
ating systems, such as nuclear reactor control systems); probability of failure on
demand (pfd) (for demand-based systems, such as nuclear reactor protection sys-
tems); mean time to failure; and so on. This commonality of measures of reliabil-
ity between software and hardware is important, since practical interest will centre
upon the reliability of systems comprising both. However, the mechanism of fail-
ure of software differs from that of hardware, and we need to understand this in
order to carry out reliability evaluation.

2 Simple probability models of the software failure process

In this section we outline two simple probability models that describe two com-
mon types of failure processes: a discrete-time (counting) model for on-demand
systems, and a continuous-time model for continuously operating systems, re-
spectively. Many software-based systems fall into one of these two classes, al-
though there are, of course, exceptions: see discussion in Section 3.

2.1 On-demand software based systems

Consider a nuclear reactor protection system (or “safety system”, as it is called;
NRPS). An idealized view of the NRPS is that its role is to act only when the re-
actor enters a hazardous state (the “demand”), whereupon its function is to shut
down the reactivity and keep the reactor in a safe state. Such demands upon the
NRPS might arise because of the failure of a wider system – e.g. the continuously
operating control system – and in a well-designed reactor they could be expected
to be quite rare, say about once a year. A dangerous failure of the NRPS would be
the system not responding to a legitimate demand. Part of the wider safety case for
the reactor would contain a requirement that the probability of such a failure on
demand (pfd) of the protection system be adequately small1.

1 For example, in the case of the UK Sizewell B reactor, this figure was 10 -7 (of which 10-3 was
allocated to the software-based Primary Protection System (PPS), and 10 -4 to the hardware-
only Secondary Protection System (SPS), in this 1-out-of-2 configuration).

© Peter Bernard Ladkin and Bev Littlewood 2016.
Published by the Safety-Critical Systems Club. All Rights Reserved

How could such a figure be claimed with high confidence? First of all we need a
simple model for testing and operational use of this kind of on-demand software-
based system.

We observe that there is a (probably very large) set of possible demands. Label
these 1, 2, 3, … Selection of successive demands by the operational environment
(i.e. the wider reactor and its environment in our example) occurs randomly and,
we claim, independently, with Pi=Pr (demand i is selected) forming a probability
distribution over all demands. Note that selection is not generally equi-probable
(indeed this is usually unlikely). Each demand either results in failure, or does not.
Define the variable:

Xi = 1 if demand i results in failure
Xi = 0 otherwise

It is easy to see that the probability of failure of a randomly selected demand is:

pfd=∑
i

Pi×X i (1)

In practice, we would not know the distribution {Pi} completely; nor would we
know which demands cause failure, so that the {Xi} will also be unknown. It fol-
lows that (1) cannot be used to calculate pfd.

Instead, pfd can be estimated statistically from the results of operational testing,
i.e. testing that selects the demands in exactly the same way they would be selec-
ted in operational use. Such testing is often based on simulation that uses an un-
derstanding of the physical world in which the computer-based system operates. In
the example of a reactor protection system, this would require knowledge of the
physics and engineering of the reactor, and of the reactor’s operational environ-
ment.

In such testing we observe a sequence of trials, each of which will result in
either success or failure. If the trials are statistically independent, and the probabil-
ity of failure has the constant value pfd for each trial, they are called Bernoulli tri-
als. A sequence of such trials forms a particularly simple stochastic process, called
a Bernoulli process.

There are two random variables of interest in such a process. Firstly, the num-
ber of failures in a given number, n, of successive demands. This has a Binomial
distribution:

Pr % r failures occur in n demands&=% r
n & pfd r %1−pfd &n−r (2)

Secondly, the number of demands until the next failure has a geometric distribu-
tion:

© Peter Bernard Ladkin and Bev Littlewood 2016.
Published by the Safety-Critical Systems Club. All Rights Reserved

Pr(number of demands up to and including next failure = r)

= (1 – pfd)r-1 pfd
(3)

Notice that this is true regardless of whether we count starting from a failed de-
mand, or not: the Bernoulli process is said to be memory-less.

If we observe r failures in n trials it is straightforward to compute estimates of
pfd as a function of r and n: details can be found in any introductory text-book on
stochastic processes, e.g. (Siegrist 2014). In particular, if we see no failures2 (i.e.
r=0), confidence bounds for pfd can be obtained as in the Table 1. Table 1 includes
numbers related the IEC 61508 SIL levels, taken “one-sided”. They arise from the
mathematics of the Binomial distribution in Equation (3).

Table 1: Numbers of failure-free demands required to obtain confidence
in different pfd levels

SIL level Acceptable
probability of

failure

Number of
failure-free
demands for
95% confid-

ence

Number of fail-
ure-free de-

mands for 99%
confidence

SIL 1 or greater <10-1 3x101 4.6x101

SIL 2 or greater <10-2 3x102 4.6x102

SIL 3 or greater <10-3 3x103 4.6x103

SIL 4 <10-4 3x104 4.6x104

Table 1 is simply for illustration. Generally, 95% confidence can be placed in a
claim that the pfd is smaller than 10-x if 3x10x failure-free demands have been ob-
served, and so on.

These results are based on two important assumptions, and a user needs to be
confident that these are satisfied for hisher particular application.

First, the statistical properties of the test case selection need to be exactly the
same as those of demand selection in operation. If the distribution of selection
probabilities of the test cases was {Pi*}, different from {Pi}, then the probability
of failure on demand in test will be

pfd =∑
i

P i×X i (4)

which will not be the same as pfd, (1), the probability of failure on demand in op-
eration. In such a case, estimates of the former will not be accurate estimates of
the latter.

Second, successive demands must be independent, with constant probability of
failure. In our illustrative example of a reactor protection system this may be a

2 In some safety-critical industries, regulators will accept only evidence of failure-free working
in support of pfd claims.

© Peter Bernard Ladkin and Bev Littlewood 2016.
Published by the Safety-Critical Systems Club. All Rights Reserved

plausible assumption since the demands will be far separated in calendar time. It
seems reasonable to assume that today’s demand is not affected by the nature of a
demand that occurred last year: i.e. knowing whether or not last year’s demand
failed will not affect the probability that this demand will fail, which is just the
constant pfd.

2.2 Continuously operating software-based systems

Many software-based systems operate in continuous time. Common examples in-
clude those that control complex hardware: e.g. automobile engine control sys-
tems, fly-by-wire airplane flight control systems, nuclear reactor control systems.
In such examples, the state of the system under control will be determined by the
elements of a many-dimensional vector of inputs – for example, in the case of a
reactor control system: temperatures, pressures, coolant flow rates, etc.

For continuously-operating software-based systems, the vector of inputs forms
an evolving trajectory, or path, in the multi-dimensional input space as (continu-
ous) time passes. With this way of looking at things, software failures can be iden-
tified with regions of the input space. Call these fault regions. When the execution
trajectory enters a fault region, a software failure occurs.

There are two sources of uncertainty, as in Section 2.1. First, there will be un-
certainty about the nature (“shape”) and location of the fault regions in the input
space. Secondly, there will be uncertainty about the future direction an execution
trajectory will take. Thus as time passes the occurrence of failures – points on the
time axis – is random: it forms a continuous-time stochastic point process.

The simplest such process is called a Poisson process, and this will often be an
accurate model of the failure process of continuously operating software-based
systems. A Poisson process is characterised by a single parameter, λ, its failure
rate, measured for example in failures per hour. As in the case of on-demand sys-
tems discussed in Section 2.1, there are two random variables of interest. First, the
number of failures in a given interval, (0,t), of elapsed time has a Poisson distribu-
tion:

Pr % r failures occur in %0,t & &=% λt &r e−λt

r!
(5)

Second, the time to the next failure has an exponential distribution with probabil-
ity density function

λe−λt (6)

Notice that, as in the Bernoulli process, this is true regardless of whether we meas-
ure the time from a failure or not: the Poisson process is memory-less.

© Peter Bernard Ladkin and Bev Littlewood 2016.
Published by the Safety-Critical Systems Club. All Rights Reserved

We can use test data to estimate λ. If r failures have been observed in elapsed
time t it is a simple matter to estimate λ, calculate confidence bounds, etc. Many
textbooks give the simple details, e.g. (Siegrist 2014). As before for on-demand
systems, a particularly interesting case for safety-critical applications is where
r=0. In Table 2 are some examples of confidence bounds based on IEC 61508 SIL
levels.

Table 2: Numbers of failure-free hours required to obtain confidence
in different failure-rate levels

SIL level

Acceptable
probability of

failure per hour

Number of
failure-free

hours for 95%
confidence

Number of fail-
ure-free hours

for 99% confid-
ence

SIL 1 or greater <10-5 3x105 4.6x105

SIL 2 or greater <10-6 3x106 4.6x106

SIL 3 or greater <10-7 3x107 4.6x107

SIL 4 <10-8 3x108 4.6x108

Again, these numbers are just illustrative. Generally, if it is required to claim a
failure rate better than 10-x, with 95% confidence, then 3x10x hours or more of
failure-free working need to be observed; and so on.

3 Some Observations on Applicability

The advantages of using these stochastic processes for interpreting software beha-
viour in situ are threefold. First, the pertinent mathematics of these stochastic pro-
cesses are simple, clear, and well-understood - for Bernoulli processes for some
300 years! (Bernoulli 1713). Line engineers tasked with assessing software could
be routinely expected to develop the pertinent mathematical skills. Second, the
key parameters are few and clear, so that it is often a straightforward matter to
identify these key parameters in system operation and be reasonably assured one
has them right. Third, interpretations as Bernoulli resp. Poisson processes are in-
deed often feasible in software operation. However, whilst many systems fit into
one of these classes – on-demand systems operating in discrete time, or continu-
ously operating systems in continuous time – there are also many exceptions.

Indeed, the choice of which of the two interpretations to use can sometimes be
a matter of convenience. Consider, for example, a safety-critical flight control sys-
tem in a civil airplane: this is obviously a continuous time system. But it may be
convenient sometimes to treat it as a discrete time system where the measure of
interest is probability of failure per flight. Here, a “demand” is a “flight”. A count
of the number of demands – i.e. take-offs and landings – may better reflect the ex-
posure of the system to possible failure than calendar time, which includes hours
spent in straight and level flight.

© Peter Bernard Ladkin and Bev Littlewood 2016.
Published by the Safety-Critical Systems Club. All Rights Reserved

In the example of a protection system used above, only failures to respond to a
(genuine) demand were considered, and these naturally form a discrete time
stochastic process in terms of the sequence of successive demands. Such failures
are sometimes called “Type 1”, in contrast to “Type 2” failures in which the pro-
tection system incorrectly shuts down the reactor when the latter is not in fact in a
hazardous state. Type 2 failures, in contrast to Type 1 failures, form a continuous-
time stochastic process of events in real time (i.e. clock, or calendar time). Type 2
failures are generally less serious than Type 1 failures, and may not impinge on
system safety, but they certainly affect system reliability. It would be reasonable to
have probabilistic requirements for both types, necessitating the use of both of the
probability models described in Section 2.

We have endeavoured to make clear in the examples above that the discreteness
or continuity of time concerns the world outside the system, and not the system it-
self. Whilst it is true that computer systems themselves can be thought to operate
in discrete time – clock cycle time – this discreteness is entirely distinct from the
worldly discreteness in a Bernoulli process which concerns successive demands
upon a computer-based system. There is to our knowledge no simple way (indeed
at time of writing we do not know of any reasonable way) to relate processor
clock cycles to the demands in a legitimate Bernoulli process model.

Of course, not all computer system failures can be modelled by a Bernoulli or a
Poisson process. For example, the assumption of constancy of pfd (or failure rate)
will be violated if fault fixes are made (or attempted) when failures occur, because
the code has changed. One would not be measuring the selfsame object after such
a change. In such cases, it might be expected that there will be reliability growth,
at least in the long run3. More complex reliability growth models (RGMs) are
needed to represent such situations and there is now a large scientific literature on
problems of this kind.

However, it is questionable whether such models are appropriate for safety-crit-
ical systems. They require assumptions about the efficacy of fault-fixing that are
difficult to justify, and thus may not produce conservative results. The simpler
models described here, in contrast, require that no changes are made to the system
as failures occur and are thus guaranteed to be conservative in this respect. In fact,
as has been remarked earlier, in many safety-critical applications there will be a
requirement that no failures are observed.

4 Determining Success and Failure

Talking about failure relies on having some notion of successful execution and
non-successful (that is, failed) execution of software. There are generally two no-
tions in common use when speaking about software execution.

3 Some fix attempts may not succeed. Some may introduce novel faults. But in the long run it
might be expected that reliability will increase in spite of such reversals of fortune.

© Peter Bernard Ladkin and Bev Littlewood 2016.
Published by the Safety-Critical Systems Club. All Rights Reserved

First is when something happens which does not conform with the expectations
of a user of the software. What is meant here by “user” is also a fluid notion. I can
use software without having any defined stake in its evaluation or ability to report
on its operation, for example if I use third-party web-application software to per-
form a transaction. The term “stakeholder” might be more appropriate. When us-
ing WWW software to perform a transaction, I certainly have a stake in its (to me)
correct operation, but it may still do things I don’t wish – and the other party to the
transaction may wish it so. There is nothing prima facie to say who is right about
whether the software is operating correctly. And some software may be designed
to force a third party to use it in certain ways uncomfortable for them. It follows
that this notion of correctness is a social construct.

Second is when there is a rigorous specification of software behaviour. A fail-
ure can be defined as a behaviour (or the outcome of a behaviour) which does not
conform with the specification.

There are notions which transgress the boundaries of these conceptions. Say I
have a specification, but the specification is in retrospect not quite right (which is
often the case). There may be behaviours which may be what I want, but which do
not conform with the inaccurate specification.

There is not space here to investigate the notion of failure of software in any
detail. However, the statistical evaluation of software does depend on a coherent,
deterministic notion of failure of software. One must be able to say in any given
circumstance whether the software has failed or has not failed. In the absence of
such a clear notion in a specific case, software cannot effectively be evaluated
statistically using the methods we have indicated above.

5 Some Tricky Issues

None of the above says that interpreting software operation in situ as a
Bernoulli or Poisson process is a straightforward matter. Indeed, there is a case to
be made that the key skill for an engineer wishing statistically to evaluate critical
software is interpretive rather than mathematical. The hard question is: are you
sure your process really is legitimately Bernoulli, respectively Poisson?

5.1 “Easter Egg”-Type Behaviour

A major issue is that there is no useful constraining relation between the behaviour
of the software on one set of inputs and its behaviour on another, closely related
set of inputs.

In certain consumer software of the past (and present), programmers would oc-
casionally include so-called “Easter Eggs” (Wikipedia 2015). When a specific

© Peter Bernard Ladkin and Bev Littlewood 2016.
Published by the Safety-Critical Systems Club. All Rights Reserved

combination of inputs was given, the software would cease functioning as inten-
ded and it would play a tune, or display a cute picture or greeting, or some such.
The chosen trigger combinations were such as to be deemed to be extremely un-
likely in normal operation, so only people who “knew” could usually evoke the
Easter Egg behaviour.

Some software used in critical applications has a “debug” or “maintenance”
mode (DMM) which allows a user access to internal data structures in the soft-
ware. Giving the software input while in DMM results in output of interest to the
maintainer, which will rarely be values appropriate for the critical function of the
software. Thus this critical function will routinely fail when the software is in
DMM. The software is switched into DMM by a specific combination of input
values known to the developers/maintainers (“maintainer”), but not necessarily by
the engineer wishing to use the software in a critical application and evaluating its
use statistically (“client”). The maintainer knows about the quasi-Easter-Egg, the
client not.

Suppose the software has been statistically evaluated on typical in-service in-
puts. Suppose future inputs are identical to those past inputs, with the sole excep-
tion that occasionally the DMM trigger input is seen. The software will fail (to ful-
fil its intended function) each time this trigger input occurs. The software failure
behaviour in the future application will be decisively different (worse) than has
been seen in the evaluation. But the difference in inputs from evaluation inputs to
future inputs is just a single one of the input values! This shows clearly that the
condition that future inputs must be the same, and occur with the same relative
frequency, as in the evaluation, must be taken rigorously for predictions from the
evaluation to be realised in the future use.

5.2 Masked Dependencies

Sometimes the behaviour of software is dependent upon input parameters which
have not been explicitly recognised. If the behaviour of these parameters is differ-
ent in the future use from that in the evaluation, then the software behaviour might
well be different, even when the behaviour of the explicitly-recognised parameters
stays the same.

A colleague tells of assessing a system for dependence on GPS. The developer
assured the assessors that the software was not at all dependent on GPS signals: it
had no function that would require location information; no such dependency had
been deliberately implemented; indeed, an attempt had been made explicitly to
avoid it. The software did not use library or other external functions that were
known to rely on GPS.

The assessors brought in a GPS jammer and activated it. The software soon
ceased to operate as intended because of the jamming. This, apparently, is not an
uncommon occurrence (Thomas 2011, RAEng 2011).

© Peter Bernard Ladkin and Bev Littlewood 2016.
Published by the Safety-Critical Systems Club. All Rights Reserved

5.3 Version Deviations

It is commonplace that minor changes to software may result in major changes in
behaviour. Apple’s “goto fail” bug in its TLS/SSL verification software, noted in
February 2014 (Ducklin 2014), ensured that all WWW-site certificates were valid-
ated, no matter what their actual status as genuine or spoofed. That is a radical
failure of intended function. However, the source code responsible was one line
containing 11 ASCII characters that seems to have been spurious (an exact duplic-
ate of the preceding line).

Since there is no estimable correlation between behaviour of software and
source-code changes, there is no way of reliably estimating the failure behaviour
of new versions of software based on the failure behaviour of previous versions
and the nature of the changes. If, say, SW Version 1.2 has been evaluated, and a
minor change has been made resulting in Version 1.3, then the failure behaviour of
Version 1.3 cannot in general be reliably estimated from the evaluation of Version
1.2.

 It may be possible to evaluate the behaviour of Version 1.3 if an impact analys-
is can demonstrate reliably that the changes made to Version 1.2 cannot affect the
pertinent behaviour of the software. Such analyses move outside the realm of stat-
istical evaluation and, to be performed reliably, likely involve the use of rigorous
formal methods.

5.4 Failure Masking

Failure masking is a phenomenon often desired in fault-tolerant systems. Large
parts of computer science have been devoted towards devising algorithms and
techniques to tolerate failures, often but not always involving component redund-
ancy. Failures so tolerated may not be apparent to the user; that is, may be
“masked”.

This is not the phenomenon usually meant when the term “failure masking” is
used in statistical evaluation of software. Failure masking relevant to software
evaluation occurs when a software component S fails or is imminently about to
fail, but this failure is not registered because a larger or a different component C
fails: the failure is registered as a failure of this second component C, and the state
of software S is not registered. If software S is about to fail, or has failed un-
noticed, then this would count for statistical evaluation as a failure of software S
on the existing input. However, it is not registered. But is a precondition for suc-
cessful statistical evaluation of S that all failures are registered.

One of the most well-known examples of failure masking concerns the melt-
down of a Babcock and Wilcox 900 Pressurised Water Reactor (PWR) at the
Three Mile Island Generating Station in Pennsylvania, USA, in March, 1979

© Peter Bernard Ladkin and Bev Littlewood 2016.
Published by the Safety-Critical Systems Club. All Rights Reserved

(IAEA 2002). The primary coolant surrounding the reactors is itself cooled by a
separate secondary cooling system, also water-based, and a heat-transfer mechan-
ism. The secondary cooling system had stopped circulation, so the primary coolant
was heating up. A relief valve (called an “electromatic relief valve” by the manu-
facturers, Dresser Industries (Perrow 1984) but “pressurizer relief valve” in (IAEA
2002), allows overheated primary coolant to overflow into a sink, relieving pres-
sure in the primary containment (the pressure vessel holding the reactor core) due
to the overheating. Enough primary coolant should remain after venting to contin-
ue to function, so the relief valve must close when pressure has reduced appropri-
ately. The valve, however, failed to reseat and coolant continued to drain out; ulti-
mately a third of it escaped through the valve. The valve position indicator itself
had a fault and indicated to plant controllers that the relief valve was closed, when
it wasn’t. The failure of the indicator masked the failure of the relief valve. An an-
imated image of the sequence of events is included in the U.S. Nuclear Regulatory
Commission “backgrounder” (USNRC 2014).

Software failure masking occurred in the incident to Malaysian Airlines Boeing
777-200 9M-MRG in August 2005 (ATSB 2007). The software was fault tolerant,
and, before and during the accident flight, operation of the software masked a pre-
vious failure of an air-data unit, whose erroneous values were treated as veridical
by the primary flight control computer system, which then commanded significant
and untoward deviations in pitch. The failure masking is considered in detail in
(Johnson and Holloway 2007), which illustrates the difficulties that may arise in
registering failures (of software or of hardware) accurately.

It is beyond scope here to consider failure masking in detail. Suffice it to say
that considerable attention must be paid to its possibility where software is to be
statistically evaluated.

5.5 Deviations from the Model

The conditions of memorylessness mentioned above are strong conditions on eval-
uation. An example is given in (Ladkin 2015) of non-memoryless behaviour in
software with one failure condition. The particular interest of that example is that
some people think that complex software such as real-time operating systems
(RTOS) have “proved their worth” over sometimes millions of hours of “success-
ful” operation and on this basis are appropriately dependable in new critical ap-
plications. There are many problems with such assertions, in particular the possib-
ility of failure masking and version control issues mentioned above. A particular
problem arises, though, if attempting to construe RTOS operation as a Poisson
process for the purposes of statistical evaluation.

Suppose the RTOS has at least one failure mode. Then there is some short peri-
od of time, microseconds or milliseconds, just before such a failure when that fail-
ure becomes inevitable (for example, at the last instruction before a HALT). Let

© Peter Bernard Ladkin and Bev Littlewood 2016.
Published by the Safety-Critical Systems Club. All Rights Reserved

such a short time period be ε. Then in that period ε the probability of failure of the
RTOS is effectively 1. However, consider a time period of ε from start of boot-up.
The probability of failure in this time for any reasonably well-used RTOS is ef-
fectively 0. So, for some time intervals of length ε in operation the probability of
failure is effectively 1 and for other time intervals of the same length it is effect-
ively 0. But the memoryless property of a Poisson process requires the probability
of failure in any time interval of length ε to be exactly the same, no matter where
the interval occurs during an execution. It follows that the operation of an RTOS
with at least one failure mode cannot be considered simpliciter as a Poisson pro-
cess4. This argument and associated considerations is presented in more detail in
(Ladkin 2015).

6 Inappropriate Evaluation Attempts

The international standard for functional safety concerning systems which include
electrical, electronic or programmable electronic (E/E/PE) components, IEC
61508, includes a short guide to statistical evaluation in Part 7, Annex D. The
second sentence of this Annex suggests that the methods, the construal of software
operation as a Bernoulli or Poisson process as above, can be used to evaluate soft-
ware libraries, compilers, even operating systems.

We have heard anecdotes from industrial assessors of people trying to do just
that. For example, a client C comes to an assessor. C proposes to use a real-time
version of an operating system to run critical software with OS+Software having a
safety requirement of SIL 3. C claims that the operating system has more than
enough hours without failure, for a particular safety function, to satisfy the reliab-
ility conditions for SIL 3 for that function. In particular, the function is continuous
(rather than on-demand) and C has detailed logs of the order of 108 failure-free
(for this function) operating hours on the software, way more than required (see
Table 2 above).

From the discussion above, besides the logs, C will have to show accurate re-
gistration of all failures in previous operation (and lack of such), with particular
consideration given to possible failure masking in operation of such complex soft-
ware. C will have to address the issue of versions: are all instances of the OS,
whose behaviour has been registered, exactly the same version? Or are there
“slight” divergences amongst them? And, finally, C must address the issue of
whether the software operation is indeed memoryless in the required sense. These
are all tricky issues, but only when they have been satisfactorily addressed can C
“plug in the numbers” from Table 2 and draw the conclusion that OS operation
fulfils the safety requirement. Then it is incumbent upon C to argue, and to ensure,

4 We note, though, that there are more complex ways to consider such software, some of which
relax some of the assumptions of a Poisson process.

© Peter Bernard Ladkin and Bev Littlewood 2016.
Published by the Safety-Critical Systems Club. All Rights Reserved

that inputs to the future system have the same statistical properties as the recorded
inputs from the past.

It follows that “plugging in the numbers” is not at all easy.

7 Extending Evaluation Techniques

The question arises whether there are more subtle, and/or more widely applic-
able methods of evaluating software behaviour statistically than the straight con-
ceptions as Bernoulli or Poisson processes. The answer is yes. However, their ap-
plication is currently a matter on which expert statistical advice is needed.

In many of the more sophisticated methods, the software architecture plays a
key role. Individual behaviours of individual components of the architecture are
statistically assessed, and the results are combined into an assessment of the whole
architecture. In many cases, the criteria for statistical assessment of the individual
components may be relaxed, but the combined assessment still enables the key
Bernoulli or Poisson mathematics to be used.

The second author has devised and used such techniques, see for example
(Bedford 2001, Chapter 12). Colleagues have recently communicated the success-
ful use of such techniques in evaluating critical software for rail applications
(Schäbe 2015). There is a recent method for assessment of two heterogeneous
channels, of which one may be “possibly perfect” (Littlewood 2012).

8 Conclusions: Why Use Statistical Evaluation?

In light of the discussion above, the reader may well wonder why anyone would
bother with statistical assessment of software proposed for use in critical systems.
There are many reasons. We give some.

Suppose a particular software-based system component has an adequate record
of past use. Suppose, indeed, it appears informally to be the “best kit for the [new]
task”. The safety requirements for each critical system or component are individu-
al, special to the specific system. The kit has been used before successfully to ex-
ecute a specific function, and this function may be required for the proposed new
use. However, it may well be that the safety requirements for previous use differ
considerably from the safety requirement for the proposed new use. It may indeed
be that documentation of the kit does not exist sufficient to justify its inclusion “as
new” in the proposed new use. This may well be the case if the kit was not origin-
ally intended for safety-critical use, but has established its dependability through
experience. It may also be the case that the assessment requirements in previous
uses were less stringent than those for the proposed new use. This could occur for

© Peter Bernard Ladkin and Bev Littlewood 2016.
Published by the Safety-Critical Systems Club. All Rights Reserved

two reasons: one, that safety standards have changed; two, as mentioned above,
the safety requirement may be different.

If the kit is indeed the “best kit for the task”, then there is good reason to use it.
And there is good reason to be able to use statistical evaluation of previous use to
make the case for its new use, if the statistics are available and adequate. A recent
example of this industrial need has been communicated to the first author, but spe-
cific details are not available at time of writing (Kindermann 2015). We may spec-
ulate that such cases will arise more frequently, as more and more examples of rel-
atively simple and reliable E/E/PE system components for specific critical func-
tions come onto the market with time.

Acknowledgments We particularly thank Peter Bishop, Jens Braband, Wolfgang Ehrenberger,
Rainer Faller, Andreas Hildebrandt, Bertrand Ricque and Hendrik Schäbe for detailed discussion
of some of the issues arising here, and Bernd Sieker for valued help with the formatting.

References

ATSB (2007) In-flight upset, Boeing 777-200, 9M-MRG, 240 km NW Perth, WA. Investigation
Number 200503722, 2007. Australian Transport Safety Board. https://www.atsb.gov.au/pub -
lications/investigation_reports/2005/aair/aair200503722.aspx , accessed 2015-02-03.

Bedford T, Cooke R (2001), Probabilistic Risk Analysis: Foundations and Methods, Cambridge
University Press, 2001.

Bernoulli J (1713) Ars Conjectandi, Basel, 1713.

Ducklin P (2014) Anatomy of a “goto fail” - Apple’s SSL bug explained, plus and unofficial
patch for OS X! nakedsecurity blog, 2014-02-24.
https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-ex -
plained-plus-an-unofficial-patch/ , accessed 2015-11-03.

IAEA (2002) Tutorial on the Accident at Three Mile Island, 2002. International Atomic Energy
Authority. https://www.iaea.org/ns/tutorials/regcontrol/assess/assess3233.htm , accessed
2015-11-03.

IEC (2010) IEC 61508, Functional safety of electrical/electronic/programmable electronic
safety-related systems, Parts 1-7. International Electrotechnical Commission.

Johnson C W, Holloway C M (2007) The Dangers of Failure Masking in Fault-Tolerant Soft -
ware: Aspects of a Recent In-Flight Upset Event, in Proceedings of the 2nd IET International
Conference on System Safety, IET 2007. Availablemfrom
http://www.dcs.gla.ac.uk/~johnson/papers/IET_2007/Chris_Michael_Upset.pdf , accessed
2015-11-03.

Kindermann M (2015) personal communication.

Ladkin P B (2015) Some Practical Issues in Statistically Evaluating Critical Software, in System
Safety and Cyber Security 2015, ISBN 978-1-78561-092-9 e-ISBN 978-1-78561-093-6,
ISSN 0537-9989 Reference PEP....U, IET, 2015. http://www.rvs.uni-bielefeld.de/publications/
.

© Peter Bernard Ladkin and Bev Littlewood 2016.
Published by the Safety-Critical Systems Club. All Rights Reserved

Littlewood B, Rushby J (2012) Reasoning about the Reliability of Diverse Two-Channel Systems in
Which One Channel Is "Possibly Perfect", IEEE Trans. Software Engineering 38(5):1178-1194,
2012

Perrow C (1984) Normal Accidents: Living with High-Risk Technologies, Basic Books, 1984.

RAEng (2011) Global Navigation Space Systems: reliance and vulnerabilities, 2011. Royal
Academy of Engineering, http://www.raeng.org.uk/publications/reports/global-navigation-
space-systems , accessed 2015-06-25.

Schäbe H, Braband J (2015) . Basic requirements for proven-in-use arguments, preprint 2015.
Available from http://arxiv.org/pdf/1511.01839v1.pdf , accessed 2015-11-06.

Siegrist K (2014) Virtual Laboratories in Probability and Statistics, University of Alabama at
Huntsville, 1997-2014. http://www.math.uah.edu/stat/ , accessed 2015-06-25.

Thomas M (2011) personal communication.

U.S. Nuclear Regulatory Commission (2014) Backgrounder on the Three Mile Island Accident,
2014. http://www.nrc.gov/reading-rm/doc-collections/fact-sheets/3mile-isle.html accessed
2015-11-17.

Wikipedia (2015), Easter Eggs https://en.wikipedia.org/wiki/Easter_egg_(media) accessed 2015-
11-17.

© Peter Bernard Ladkin and Bev Littlewood 2016.
Published by the Safety-Critical Systems Club. All Rights Reserved

http://arxiv.org/pdf/1511.01839v1.pdf
https://en.wikipedia.org/wiki/Easter_egg_(media
http://www.nrc.gov/reading-rm/doc-collections/fact-sheets/3mile-isle.html

	1 Introduction
	2 Simple probability models of the software failure process
	2.1 On-demand software based systems
	2.2 Continuously operating software-based systems

	3 Some Observations on Applicability
	4 Determining Success and Failure
	5 Some Tricky Issues
	5.1 “Easter Egg”-Type Behaviour
	5.2 Masked Dependencies
	5.3 Version Deviations
	5.4 Failure Masking
	5.5 Deviations from the Model

	6 Inappropriate Evaluation Attempts
	7 Extending Evaluation Techniques
	8 Conclusions: Why Use Statistical Evaluation?

