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Abstract

We show how to generate fault trees algorithmically from Causal
Influence Diagrams (CIDs), and report on the implementation of such
a facility in the CID-drawing tool cid2dot.

1 Some Considerations on Fault Trees

Fault trees are a widely-used method, standardised in many countries, of
cataloguing in a structured manner the myriad ways that a system can go
wrong. Fault trees have been used in the engineering of safety-critical systems
for a half century, starting with the Minuteman ICBM system and the nuclear
power industry [VGRHS81] in the USA. In many industries they remain the
prime method of assessing the safety properties of a system design in advance
of building the system. They can also be used during and after an incident
for finding the source of failure, in other words for high-level “debugging”.
Fault trees have two fundamental theoretical aspects: logical, and prob-
abilistic. The logical aspect is fundamental, since the probabilistic features
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Figure 1: The Pressure Tank With Overpressure Vents

1.1 How Fault Trees Look

Figure 1 shows a pressure tank, and Figure 2 shows a fault tree for the pres-
sure tank (at this high level of design) taken from [Lev95]. The pressure
tank example in various versions is a “classic” amongst fault tree explana-
tory examples, likely because of its appearance as such in the Fault Tree
Handbook [VGRHS81], written by some of the original developers of fault
tree methodology in the nuclear power industry.

We have implemented a postprocessor to our program for displaying
Causal Influence Diagrams (CIDs), cid2dot, for automatically generating
fault trees according to the techniques explained here. Since cid2dot uses the
dot graph-drawing tool, which draws straight edges between nodes, rather
than the horizontal-vertical cornered edges used in conventional fault tree
display, we shall display the fault tree in Figure 2 as in Figure 3.

1.2 The Logical Structure of Fault Trees
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the labels appearing in the nodes of the tree. A positive Boolean expression
is a Boolean formula which uses the logical constants “AND” and “OR” only,
or a Boolean formula logically equivalent to such a formula.

If R is the label of the top node of the tree, the assertion represented by
the fault tree is that

R is equivalent to (the Boolean formula denoted by the tree)

R is typically a statement of a fault (either a failure of function, or a
violation of a safety requirement of some sort). Let the Boolean formula
denoted by the tree be denoted by B. The fault tree thus asserts that fault R
occurs in exactly the circumstances in which B occurs.

We call a fault tree correct if and only if the statement R is equivalent to B
is true. Suppose that (the fault tree corresponding to) B is correct. Suppose
further that B’ is (the assertion corresponding to) another fault tree for R,
and suppose that B’ is correct. Then because both R is equivalent to B and R
is equivalent to B’, B must be equivalent to B’. It follows that all correct fault
trees for R with the same atomic formulae are Boolean equivalents of each
other. Given the same collection of “faults” (atomic formulae), all correct
fault trees for R are then just rewrites of each other.

1.2.2 Logical Relation to Causal Logic

The logic EL for describing system behavior was introduced in [LL98] and
forms the logical basis for WBA, which is a part of CSA. EL is a multi-
modal logic, including temporal logic as well as Lewis’s causal logic. It is well
known that oiven a first-order loogical lancuace sufhicient for desceribine fullv
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the system do not suffice in general to express liveness properties. Since
some violations of system properties which one might want to represent as
fault trees may well be, or imply, liveness properties, if follows further that
fault trees over the available state predicates of a system do not suffice for
expressing all violations of expressible system properties. If all safety prop-
erties of a system may be represented as technical safety properties, then
one has a chance to represent the safety properties as fault trees (which we
shall show immediately). Whether safety properties of a given system may
be represented as technical safety properties depends, upon other things, on
what is chosen to be defined as an accident of the system.

A failure corresponding to R leaves the system in a particular state, and
all states of the system, as considered in the description language L, which
may be a high-level or low-level system description language, can be repre-
sented as a conjunction of basic formulae of L (a basic formula is an atomic
formula in L or the negation of an atomic formula). So the collection of all
possible failures corresponding to R may be represented as the disjunction
of all such state descriptions (conjunction of basic formulas of L). This is
writing R in “disjunctive normal form” (DNF). But while this is theoreti-
cally possible, the DNF may be orders of magnitude larger than the most
succinct form of writing the same failure mode R as a Boolean expression
— indeed, the function converting an arbitrary Boolean formula into a DNF
equivalent is of exponential complexity (in time and space!). So this is not
very plausible method of obtaining a fault tree in practice, even in this case.

A CID in general says how a system works, physically. That is, in general
one could consider it as a form of specification of a system. Since specifi-
cations can be logically more complex than Boolean expresssions. it follows
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semantically equivalent) to each other. It may be very hard or impossible
to decide what the appropriate procedure is in these circumstances. Should
one choose a “preferred” fault tree, and run the risk that its debugging and
prediction properties are incomplete? Or should one use them all, to achieve
a greater level of completeness at the cost of significant repetition? Anwering
these questions is beyond the scope of the current work. We wish only to
make it clear that generating fault trees remains in general an information-
lossy process. Nevertheless, let us go ahead.

2 Why Generate Fault Trees Automatically?

Designing fault trees is an art based on experience. Designing CIDs is an art
based on experience. If one needs a fault tree, why would one substitute an
indirect method, such as designing a CID or CIDs, followed by an automated
or semi-automated step, generating the fault trees from the CIDs, for the
direct method of just drawing the fault trees?

We believe, and our experience has shown us, that CIDs are intuitive
representations of the way a system functions or fails. System designs are
often represented by “functional diagrams” and other diagrammatic devices,
and the corresponding CIDs are conformant with, although not identical to,
the functional diagrams. This suggests to us that one is less likely to need
“Eureka” steps when designing a CID, and more likely to find errors when
checking the correctness of a CID. The concept of how things work is more
cognitively malleable and more cognitively familiar, than a concept of how
things fail. We think correct CIDs are easier to come by than correct fault
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avalhng itself of Causal mechanisms. The property “always (X implies even-
tually Y)” is a classical example of an always-eventually property, and along
with the property “always eventually X” entails “always eventually Y”. Such
properties are not always reducible to safety properties. Such properties will
be ensured in a teleological system through causal link “X — Y” with hys-
teresis (that is, unspecified time delay), which is represented in the CID with
the annotation “TIME” on the arrow linking “X” to “Y”. So CIDs have some
expressive capabilities for teleological systems which lie near to the system
specifications. Fault trees are unable to express always-eventually properties
in general.

We have found that CIDs in practice are indeed cognitively closer to
system function specifications and important complex system properties of
teleological systems, and that designing them is cognitively easier a task than
designing fault trees by hand; corresponding errors are reduced and error-
detection is enhanced. However, the case for having and using fault trees
has been made above and elsewhere; we may take it that we need them.
We believe this makes the case for generating fault trees as automatically
as possible from hand-designed CIDs over hand-designing fault trees. We
propose to show here how fault trees may be automatically generated from

CIDs.
3 A Causal Influence Diagram Example

Suppose one has a Causal Influence Diagram (CID), as in Figure 4. The
nodes are labelled abstractly. We denote the single alphabetic labels in the
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Figure 4: An Example of a CID



a parent node represents a collection o1 conditions jointly suliicient 1or
the occurrence of the parent situation.

Conditions which are individually necessary for the parent and jointly suf-
ficient we shall call INJS factors. The second assumption then says that
any node with two or more in-edges has a collection of INJS conditions as
children. This assumption entails that one must take particular care in for-
mulating “alternative paths” to a node in a CID, that these alternatives
terminate in a set of INJS conditions for their confluence.

4 Denoting “Normal” and “Failure” Condi-
tions

First, we show how to deal with chains. The CID in Figure 4 presents
the causal ancestors of a situation “A”. We assume that “A” is a condi-
tion expected in or consistent with the system specification and the system’s
safe running, and, correspondingly, that “Not A” represents a fault or fail-
ure condition of some kind (either a functional failure, or an accident or
a hazard).? This assumes that all factors are discrete factors, since, with
fluents “X”, there is no prima facie meaning to an assertion “Not X”: if
“X” is “Temperature(Liquid)”, for example, it makes no sense to say “Not

2CIDs devised to analyse failure conditions or accidents may already have the top node
labelled “Not A”. The convention we use here is thus important for generating the fault
tree. Nodes that represent failure conditions will implicitly include what we represent
as a “Not ...” in what follows, whether that negation is explicitly present in the label
or not. Another, maybe preferable, way of checking this would be to annotate a formula



Natural language is expressive enough for this failure of a desired causal
mechanism to have, maybe many, succinct and evocative representations, but
we shall simply use the phrase “X and Not Y” to represent such a failure.
In the case in which “Y” has no predecessor in the CID, we shall simply
write “Not Y”. If this convention may be uniformly followed throughout the
fault tree construction; a more succinct representation of the failure condition
can be substituted at the end of construction if desired, and meanwhile the
label carries its origin with it during construction, enabling more efficient
error-checking.

The case of “X — Y”, where “X” and “Y” are fluents, is largely similar. A
normal condition is represented by a particular relation, say “P”, between the
values of “X” and “Y”. We can denote this situation by “P(X,Y)”. When this
situation does not hold, namely in the case of “Not P(X,Y)”, then it is obvious
that we can reasonably use the same “Not” annotation as for the discrete
case. However, the label of the node itself is not “P(X,Y)”, but, rather, “X”
or “Y”. Further, the description of “P” may be much too involved to want to
write in a node label, and, besides, its description is irrelevant to the task of
generating a fault tree. We choose to write, as a failure designation, “Y is out
of tolerance with respect to X”, or, more succinctly, “Y is out of tolerance”.
We shall denote this in abstract example even more succinctly as “X and
Not Y”, as we do in the discrete-factor case, since when we are dealing with
abstract CIDs, as here, we do not know which factors are discrete and which
fluent, and we do not need to know. In concrete examples, we shall use the
“out of tolerance” nomenclature.
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Figure 5: A Chain of Necessary Factors and Ancestors

The relation of being an NCF is not transitive. That is, if X is an NCF of Y
and Y is an NCF of Z, this does not necessarily mean that X is an NCF of
Z. It might be or it might not be. Thus we show “J” as a necessary causal
ancestor (NCA) of “A”, meaning that it is one in a chain of necessary causal
factors that lead to A, by using a dotted line in Figure 5.

Since all factors shown in Figure 5 are necessary, but not necessarily
sufficient, or at least not known to be sufficient, any one could occur without
the condition of which it is an NCA occurring. That is, “L” could be the
case without “K” occurring, “K” could be the case without “J” occurring,
and “J” could be the case without “A” occurring. In a case in which, say,
“L” were also to be a sufficient causal factor for “K”, then an occurrence of
“L” entails that “K” occur also, and it would not then be the case that “L”
could occur without “K” occurring. But let us deal first with the situation in
which all are known to be either NCFs or NCAs of their successors in Figure
5, as indicated.

The situation in which “L” occurs but “A” does not occur, according to
R Y h b YT )M =PRI R IS )R < S ) PRI R R - TR A
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Figure 6: The Fault Tree Arising From the NCA Chain

descriptions in the boxes and is widely used in fault trees.?

The case in which a link in the chain is a sufficient causal factor or suf-
ficient causal ancestor is shown in Figure 7. The condition “X” is an SCA
of “A” | whereas “Y” is an NCF of “X” and “Z” an NCF of “Y”. So the
situation “Z and Not Y” can arise, as can the situation “Y and Not X”, but
since “X” is sufficient for “A”, the situation “X and Not A” is impossible,
and thus, in contrast to the fault tree in Figure 6, the factor “X and Not A”
is not shown. The fault tree resulting from the chain including an SCA is
shown in Figure 8.

The case in which one has two NCFs that are INJS conditions, but in
which neither is individually sufficient, is shown in Figure 9. In this case, “B
and E and Not A” is not possible, since “B and E” entails “A” (this is what it
means for “B” and “E” to be jointly sufficient). But each factor indivudually
is necessary, although not presumed to be sufficient, so “B and Not E and
Not A” is possible, as is “Not B and E and Not A”. The labelling we use
on the fault-tree nodes is the pre- and post-conditions of the factors in the
NCF/NCA/SCF/SCA relations, so these labels with three factors reduce to
“B and Not A” and “E and Not A” for the fault tree representation in Figure
10.

3The maior difference between the notation we use here and that of fault trees is that
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Figure 7: A Chain of NCFs with a SCA
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Figure 9: Two Individually Necessary, Jointly Sufficient Factors
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Figure 10: The Corresponding Fault Tree for the INJS Factors



Figure 11: Step 1, After Application of MPRI

6 Putting It All Together

We presume that the CID in Figure 4 is complete, that is, the individual
edges indicate the relation of NCF and, when a node has two or more in-
nodes, those in-nodes are INJS conditions.

The first step proceeds exactly as indicated above. We repeat it here for
completeness.

Multiple Path Reduction (MPR) Where multiple paths connect two nodes
in the complete graph, we connect them with an NCA arrow, and elim-
inate the intervening nodes.

We then apply the MPR operation iteratively:

MPR Iteration (MPRI) Iterate MPR until there are no more multiple
paths.

We arrive at the CID in Figure 11.
Now:
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Figure 12: Step 1, After Application of CC
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Figure 14: Applying BMP

The “J”—to—“A” fragment of the CID can now be expanded into a fault
tree. This fragment is shown in Figure 13.

We first consider the node “A”, which has two in-edges. We have seen
that this node with its two predecessors can be transformed as above, which
we notate as follows:

INJS Resolution (INJSR) Apply the INJS transformation to a specific
node

We apply INJSR as follows:

Break Multiple Paths (BMP) When there are multiple paths from node
“X” to node “Y”, and node “Y” is a confluence node of those paths,
apply INJSR to “Y”.

We apply BMP thus to “A”. The result, as above, is shown in Figure 14.
We are now left with a chain to reduce, denoted by the node “E and

Not A”, which we recall is “E and Not B and Not A”, and a part-chain,

part-multipath, graph fragment, denoted by the node “B and Not A”, which

we recall is “B and Not E and Not A”. The chain is shown in Figure 15, and

the chain-multipath is shown in Figure 17.

The chain in Figure 15 can be handled as before using CC, and the resulting

fault tree is shown in Figure 16.

Finally, the “J” to “Not E” fragment looks like Figure 17, to which MPR
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Figure 15: The J-to-Not-B Fragment
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Figure 17: The J-to-Not-E Fragment
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Figure 19: The J-to-Not-E Fault Tree After BMP
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Figure 21: The Complete Fault Tree

The final result of putting all these steps together is shown in Figure 21.
Here, the uppermost “OR” node has five children, which arise from fusing the
two “OR” nodes in Figure 12 and Figure 14, which corresponds to a Boolean
identity arising from the fact that “OR” is an associative and commutative
operation. A final point to note is that the “Not J” node in Figure 16 as well
as a similarly-labelled node in Figure 19 have been identified with the node
labelled “K and Not J” under the top-level “OR” gate. This operation is as
follows:

Node Fusion Identify nodes in component sub-trees with any node con-
taining the same “Not”-assertion, when the labels in the node which
do not occur in the component sub-tree are omitted.

Using mode fusion, we observe that node “K” appears neither in Figure 16
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other questions of algorithm engineering.

7 A Simplified Fault Tree

We have shown how rigorously to derive a fault tree from a CID. The primary
way in which such a generated fault tree may be simplified is through observ-
ing various of the intermediate nodes in Figure 21 to be superfluous. That
is, they describe a situation which has a trivial logical relation to situations
described in other nodes in the fault tree. This simplification procedure re-
mains a human operation for us (in principle one could use some sort of logic
checker to test the logical relations between the various faults. We would
guess, however, that this would be too much work for the potential benefits
it might reap).

7.1 Handling Superfluous Nodes

When nodes are observed to be superfluous, they can simply be omitted from
the fault tree. It may also be that it is convenient for semantical purposes
to leave them in. Thus we prescribe no algorithmic method for dealing with
such superfluities. We suggest it is best to inspect the generated fault tree
by hand, identify potential superfluities by inspection, and eliminate them if
it is felt appropriate to do so.

8 Implementing Fault-Tree Generation



it is customary in fault-tree generation to label with nodes with short natural-
language descriptions of the fault. We do not do this. Instead, we label the
nodes wiht a sentence of logic, derived from the formalised language used
for describing the CID. We have a simple logical algorithm for generating
the labels. Short, intuitive labels for the annunciated faults may be defined
through a glossary, which uses a series of definitions such as illustrated in
the table Figure 25. The labels are best generated by hand, because there
is likely to be no simple automatic way to generate an intuitively appropri-
ate name for a particular type of failure. Engineering practice already has
conventional names for failures, but to our knowledge there is no algorithmic
relation between the conventional labels and the logical form of our auto-
matically generated labels. An algorithm for generating short labels is thus
inappropriate, and short labels are best generated through a glossary as in
Figure 25, because

e engineers are likely to use the intuitive failure labels in their everyday
practice, and

e it is cognitively more efficient if the fault tree labels correspond to those
used by the engineers in their everyday practice; and

o for reasons illustrated in the formal WBA in [Lad00, Part III], it is
appropriate to have able formal logical definitions of everyday terms,
for the purposes of reasoning about the faults.

There is no reason to restrict the labelling procedure to the fault tree. It
can well apply to the CID, also, and we have in fact applied it, by defining
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Figure 23: The CID for the Vent Subsystem

with the predicates Not Closed(Ventl) and Not Closed(Vent2).* Such inter-
translation of predicates is precisely the same as choosing labels: logically,
one is defining new primitive predicates in terms of other, previously defined,
predicates. Thus we enter these into the definition table also, as in Figure 25.
The glossary file created as input into the graph-drawing program is shown
in Figure 26. The result of substituting the label definitions in the fault tree
of Figure 24 is shown in Figure 27.

8.2 The Logical Generation of Labels

There is a straightforward logical procedure (one hesitates to call it an algo-
rithm, because of its simplicity) for generating the precise labels in the fault
tree. Each CID diagram, say Figure 23, is already equipped with node labels.
Consider a transition, say from Command(Open(Vent1)) to Open(Vent1) in
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Not On(WarnLight)

Operator Fails On(WarnLight) And

to See Indicator Not Operator perceives ON(WarnLight)

Operator Failure Operator perceives ON(WarnLight) And

to follow procedure Not Operator commands (Open(Vent2)

Vent2 Failure Operator commands Open(Vent2) And
Not Not Closed(Vent2)

Open(X) Not Closed(X)

Figure 25: Label Definitions for the Fault Tree

Figure 23. The CID shows that this transition is expected to take place
through the system design. A failure of this intended transition would mean
that the postcondition, Open(Ventl), is not achieved, even though the pre-
condition Command(Open(Ventl1)) is fulfilled.

This failure is thus correctly described by saying that the precondition
was fulfilled, but the required postcondition did not come to pass. The failure
event, then is described by the action formula

Command(Open(Vent1)) And Not Open' (Vent1)

using the prime notation.

The fault tree generated from this simple example may seem for the
example somewhat complicated, especially in comparison with that from
[Lev95] in Figure 2. However, it is easy to make mistakes (mainly omissions)

S PR IS AR I I IR R AR S BRI R N I | PEREUNRR IR R AP



Glossary file automatically created by cid2ft.pl, Version 1.0
Each line consists of two parts, the left one containing the automatically
generated pre-post conditions, the right one (after the "-->" seperator)

should be filled in manually with appropriate replacements.

If the part left of the "-->" seperator is changed in any way, the
automatic replacement will not work.

Lines beginning with # are ignored.
the use of ’/n’ for line feed is possible.

CI-file (main input file): ../Leveson/Leveson_Tank.ci
glossary file (this file): ../Leveson/Leveson_Tank.gls

HoH H H H H H HEHHHEHHHHEHH

On(TankPressureSensor) And (Not Command(Open(Vent1)))’ -->

Command (Open(Vent1)) And (Closed(Ventl))’ -->

Pressure(Tank) >Q And (Not On(TankPressureSensor))’ -->
On(TankPressureSensor) And (Not On(WarnLight))’ -->

On(WarnLight) And (Not Operator perceives On(Warnlight))’ -->

Operator perceives On(Warnlight) And (Not Operator commands Open(Vent2))’ -->
Operator commands Open(Vent2) And (Closed(Vent2))’ -->

Figure 26: Glossary File for the Fault Tree
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and this is likely to lead to the situation in which PRV 2 does not open,
which, in conjunction with a situation in which PRV 1 does not open, could
lead to an explosion, according to the fault tree.

If the pressure monitor for the Valve 2 subsystem is identical with that
for the Valve 1 subsystem, as in our example in Figure 1, then this is a
common-cause failure of both valve subsystems. Such common-cause failures
are recognised by the automatic fault-tree generation algorithm, and denoted
just once in the appropriate place (in Figure 24, at a disjunctive node above
the individual failure nodes Closed(Vent1) and Closed(Vent2); of course the
failure of the pressure sensor entails both of these predicates, but although
they are true, they are not true because of failures of Vent! and Vent2, which
the nodes Closed(Vent1) and Closed(Vent2) are intended to convey).

If the pressure monitors for the two valve subsystems are different, they
would be differently denoted, and failures of each subsystem could well be
assumed to be independent, in which case one would place two separate nodes
under the respective valve failure nodes Closed(Vent1) and Closed(Vent2),
as indeed the fault tree in Figure 2 has under the one, but not the other,
subsystem failure.

We feel that the automatic raising in such circumstances of common-
cause failure is always an appropriate cognitive optimisation to make in a
fault tree, for the following reasons:

1. The resulting fault tree makes a logically equivalent statement to the
tree with an unraised common-cause failure;

2. The common-cause failure is not denoted through its relations to its

f‘Q'I'IQQ] ralaS alolaYathFasavYaratal ]"\'I'If 'iQ er\hac;car] QQT‘]‘7 ras al ‘KT}'\QY‘I AQQPQY‘I{""Y‘I(“ fl”lT‘f\11(Tl"l



8.3 A Second Example

For a second illustration of the use of this tool, we chose the pressure tank
example in Figure 28, taken from the textbook [KH99]. The fault tree given
in [KH99] is reproduced in Figure 29. Our development reveals obvious
lacunae in this proposed fault tree. The CI-Script for the whole system, for
the relief valves, and for the inlet steam pipe, is similar to that in [Lad00,
Chapter 7, Causal Analysis of a Pressure Tank], and is shown in Figure 30,
Figure 31, and Figure 32, respectively. The CIDs for the whole system, for
the relief valves, and for the inlet steam pipe, are shown in Figure 33, Figure
34, and Figure 35, respectively.

The automatically-generated fault tree for the system is shown in Figure
36, and the fault tree with defined labels using the glossary in Figure 37 is
shown in Figure 38. This may be compared with the fault tree from [KH99] in
Figure 29, to see the difference between a carefully generated fault tree from
a believable CID, and a fault tree generated by hand as a toy example. We
do not regard the reduced size of the latter as any advantage at all, compared
with the extent of the information loss. We found much to criticise in the
fault tree in Figure 29, and we think the reader will also.
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[11 /\ [;.1j /% Quantitykao&uéé) }/ + x/
/\ [-.2] /* Temperature(Product) // + */
/\ [-.3] /* Fixed Volume // */

[1.11 /\
/\

[1.2] /\
/\
/\
/\
/\

[1.3]1 /\
/\

[-.
[-.

1] /* Quantity(Steam) // +,TIME */
2] /* Quantity(HC) // +,TIME */

.1.11 /% // +,TIME %/

.1.2] /% // +,TIME %/

.3] /* Temperature(Steam) // + */
.41 /* Temperature(HC) // + */

.5] /* Temperature(Catalyst) // + */

.1] /* Closed(Ventl) // x*/
.2] /* Closed(Vent2) // */

[1.1.1]1 /\ [-.1] /* Open(SteamValve) // */

#include "Steam.ci"

#include

"Vents.ci"

Figure 30: The Pressure Tank CI-Script



[1.1.1] /\ [-.1] /* Pressure(Tank) > N // */
[21 /\ [-.1] /* Command(Open(Vent2)) // */

[2.1]1 /\ [1.1.1] /*x // %/
Figure 31: The Relief-Vent Subsystem CI-Script

[0] /* Quantity(Steam) // */
[1] /* Not Open(SteamValve) // */ {< A }

[11 /\ [-.1] /* Command(Close(SteamValve)) // */
/\ [-.2] /* Operator commands Close(SteamValve) // */

[1.1] /\ [-.1] /* On(SteamPipePressureSensor) // */ { A >}
[1.1.1] /\ [-.1] /* Pressure(SteamSupply) > M // */

[1.2] /\ [-.1] /* Operator perceives On(WarnLight) // */
[1.2.1] /\ [-.11 /* On(WarnLight) // */

[1.2.1.11 1.1.11 /* ienored // x/
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Figure 34: The Relief Vent Subsystem CID
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Figure 35: The Inlet Steam Pipe CID
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# Each line consists of two parts, the left one containing the automatically
# generated pre-post conditions, the right one (after the "-->" seperator)
# should be filled in manually with appropriate replacements.

#

# If the part left of the "-->" seperator is changed in any way, the

# automatic replacement will not work.

#

# Lines beginning with # are ignored.

#

# the use of ’/n’ for line feed is possible.

#

#

# CI-file (main input file): ../Kammen-Hassenzahl/Tankl.ci

# glossary file (this file): ../Kammen-Hassenzahl/Tankl.gls

#

On(SteamPipePressureSensor) And (Not Command(Close(SteamValve)))’ -->
Pressure(SteamSupply) > Q And (Not On(SteamPipePressureSensor))’ -->

On(SteamPipePressureSensor) And (Not On(WarnLight))’ -->

On(WarnLight) And (Not Operator perceives On(WarnLight))’ -->

Operator perceives On(WarnLight) And (Not Operator commands Close(SteamValve))’ -
On(TankPressureSensor) And (Not Command(Open(Ventl)))’ —-->

Command (Open(Vent1)) And (Closed(Ventl))’ -->

Pressure(Tank) > M And (Not On(TankPressureSensor))’ -->

On(TankPressureSensor) And (Not Command(Open(Vent2)))’ -->

Command (Open(Vent2)) And (Closed(Vent2))’ -->

Figure 37: The Glossary File for the Second Example
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