Building a Corpus for Cockpit Voice Recorder
Transcripts
in the project seminar
Computational Natural Language Systems
RVS-Occ-01-06
RVS, Faculty of Technology, University of Bielefeld

Oliver Holz* Thomas Hettenhausen'

October 23, 2001

Contents
1 Overview

2 Analyzis of the CVR transcripts
2.1 Sentence/expression structure L.
2.2 Tokens
2.3 Semantic structure Lo o

3 Implementation
3.1 Languagesweused
311 XML e
3.1.2 Perl
3.2 Design of the XML structure
3.3 Design of the Perlscript oL

4 Example analyzis
4.1 Original transcript oo
4.2 XML sourceo e
4.3 XML-to-screen outputo
4.4 Summary . o.o. ..o e

A The grammar behind the XML structure
B The Document Type Definition (DTD)

C List of keywords

*oliver.hoelz@Quni-bielefeld.de
Tthettenh@techfak.uni-bielefeld.de

11
11
11
14
14

17

18

19

D Contexts
E Flight phases

F Source code of the Perl script

20

21

22

1 Overview

Cockpit Voice Recorder (CVR) transcripts are a valuable tool when studying
aviation incidents. It is not always necessary to have the original audio record-
ing, since often it suffices to be able to understand the process of the talks
between involved persons.

In their original (released) format, the CVR transcripts are only little for-
matted. They are usually plain text files encoded in ASCII. They consist of
lines, each line containing both information about the speaker of the message,
the time when it was spoken and the message itself. In most cases, this infor-
mation is separated only by blanks.

Our object is to provide an adequate corpus format for these transcripts for
automated processing, making it easier to annotate, search and compare CVR,
transcripts automatically. This format enables us to help potential users of the
corpus (e.g. [2]).

2 Analyzis of the CVR transcripts

CVR transcripts are an important instrument in developing aviation safety. In
their original plain text format the form of structure these documents have is
that each line consists of three parts: a time code, a speaker and the actual
transcribed message (see [5], [6] and [7]). Usually these parts are only separated
by a blank, and sometimes not even this basic “standard” is used.

This kind of processing does not work very well with automated processing.
Comparing them, annotating them, searching them, finding sequences and more
with a computer system is not possible. It also means that the contained infor-
mation which might be important for analyzing accidents is rather inaccessible.

2.1 Sentence/expression structure

As mentioned above, CVR transcripts are usually separated into lines. All lines
contain a time code, a speaker and the message itself. The lines are consecu-
tively ordered by the time code. For the speaker roles we identified different
schemes for certain situations. In intra-cockpit communication, two schemes
can be distinguished. The first scheme uses speaker roles such as “Captain”,
“First Officer”, ”Pilot-In-Command” [6].

Example:
11:58:05 Capt Altimeter 1014, MDA is 173, Set.
11:58:08 F/O 1014, MDA 173 set right, V bugs.

The second one simply enumerates the different recording sources (e.g. head-
phones) in use [7].

Example:
18:08:38 CAM-2 a little rudder.

18:08:39 CAM-1 all right.

Another scheme is utilized in transcripts of radio communication between a
tower and different airplanes. Here the official calling signs identify the speaker

[5].

Example:
16:14:59 ASA261 K Alaska two sixty one say again the frequency one two zero five two
16:15:03 R30 Uh Alaska two sixty one twenty six fifty two

Sometimes the last scheme is mixed with one of the first two if required.

The messages themselves can be made up of one or more sentences, although
they are not always punctuated correctly. Since these documents are transcripts
of spoken language, the sentences are often elliptic and may contain utterances
and unintelligible words.

2.2 Tokens

After analyzing the sentence/expression structure, we took a closer look at the
token level. The transcripts contain many technical terms special to aviation.
Often these are grouped with common terms such as numbers, alphabets or
directions.

We built a list of keywords intuitively by manually searching the transcripts
for these technical terms. After we had done so with an initial transcript, we
checked more transcripts against our list. When a potential keyword was not
already in the list, it was added. Due to this iterative algorithm, we soon had a
relatively stable list of keywords. We completed this list with the aforementioned
numbers, alphabets, and direction identifiers, and then took a closer look at this
list.

Since one of our objects is to analyze the semantic structure of the dialog,
we must be able to determine the topics of the individual sentences. Together
with the authors of [1], we came up with a number of categories. These included
e. g. flight phases, parts of planes or airports, weather conditions and changes
of the state of the plane (heading, speed, altitude). We also created a list of
possible flight phases, such as cruise, taziing and descend (see appendices C and
D).

The keywords in our list then were annotated with both the meaning of the
token, the contexts that its use could indicate and the flight phases it could
occur in, and sorted alphabetically.

The syntax for an entry in the keyword list is
keyword [meaning] [context] [flight phasel
so it would look like this
runway [runway] [radioNumeral] [taxiing:takeoff:approach:descend:landing]

In this example runway is the word actually appearing in the transcript. It
has the meaning runway, indicating that the speaker is talking about runways.
Its context is radio Numeral, because runways are usually referred to by numbers,
as in “runway 09”7, so a numeral can be expected to follow in the transcript. The
flight phases in this example are those dealing with the beginnig and the end of
a flight, because that is when the crew usually talks about assigned runways.

2.3 Semantic structure

Semantic structure of the dialog refers to the relations between the different
speech acts in the dialog, as opposed to the semantic structure in a single speech
act.

With the categorisation of keywords it becomes possible to narrow down the
number of possible topics of a message or sentence. This made it interesting for
us to analyze the semantic structure of the dialogs, to figure out whether these
topics indicate relationships between consecutive sentences.

Theses relations are usually of the kind request-and-response or similar dialog
acts. We then began to determine typical signatures for these dialog acts and
created a list of keyphrases that indicate whether the sentence they are part
of are a request or a response. These keyphrases are not to be confused with
the keywords as described in the last section. While the former usually consist
of more than one word and indicate a certain speech act such as request, the
latter are the technical terms found throughout the transcripts that help us
determining the subject.

E.g. “Could you” is a typical keyphrase indicating a request, while “brakes”
is a keyword in a technical context.

The transcripts we analyzed manually were the following (the first three
transcripts are those we spent most of our time with):

e China Airlines Flight 676 (1998-02-16) (China 676)
Alaska Airlines Flight 261 (2000-01-31) (AA 261)

Airborne Express Flight 827 (1996-12-22) (AirEx 827)

Air France Flight 4590 (2000-07-25) (Air France Flight 4590)

UN Flight KSV 3275 (1999-11-12) (KSV 3275)

¢ Vladivostokavia Flight 352 (2001-07-04) (Vladivostokavia 352)
We looked for the following dialog acts:

e Statement with positive confirmation (state +)

e Statement with negative confirmation (state -)

e Question and answer (q / a)

e Request and response(s) (req / res)

e Statement and response(s) (state / res)

This resulted in the following figures (in percent):

| | state + | q / a | req / res | state - | state / res |

AirFrance 4590 22 0 67 5 6
UN Flight KSV 3275 20 0 80 0 0
China Air 676 30 11 57 2 0
Alaska Airlines 261 34 17 45 0 4
Airborne Express 827 19 19 31 0 31
Vladivostokavia 352 43 14 29 0 14

When we looked at the dialogs a little closer, we noticed that although these acts
are different in form, they are pragmatically indistinguishable for our purpose.

One reason for this is the fact that there is a well defined chain of command.
In such an environment, a statement like “the brakes need to be checked” by
the highest ranking officer aboard is pragmatically a request or command to a
lower ranking officer.

Also, for all involved it is clear that the situation appears in a technical
environment. So the occuring speech acts in the CVR transcripts are limited in
their variety.

Here are some examples that we give to show that for our work it is ok to
merge the categories:

e Question and Answer:

1. (from China 676)
CAP Do you call them?
F/O Yes.

F/O Tower, Dynasty 676, 3 miles on final. Confirm clear to land.

This question resulted in the first officer calling the tower, so it is
actually a request to call the tower.

2. (from Alaska Airlines 261)
R14 Do you see him up there high ahead and to your right?
SKW5154 Ah we're looking Skywest fifty one fifty four.

Skywest is not really answering the question, but instead beginning
with a new action as requested.

e Statement and positive confirmation:

1. (from Alaska Airlines 261)
ASA261 Our intention is to land at Los Angeles.
R25 Roger. You're cleared to Los Angeles airport via present position.

The tower interprets the simple statement as a request, acknowledges
it and grants the requested clearance.

2. (from Kosovo 3275)
CTL You’re number two to a much faster aircraft just ahead of you now.
RDO Okay

This can be interpreted as the tower requesting that the pilot lines
up according to the aircrafts’ speed.

Therefore, we will be merging the three categories of QuestionAndAnswer,
Statement AndPositiveConfirmation and RequestAndResponse(s) into just one
RequestAndResponse(s) category.

With the merged categories, we get the following figures (in percent):

| | req / res | state - | state / res |

AirFrance 4590 89 5 6
UN Flight KSV 3275 100 0 0
China Air 676 98 2 0
Alaska Airlines 261 96 0 4
Airborne Express 827 69 0 31
Vladivostokavia 352 86 0 14

When we add the corresponding numbers together, the overall share of that
category in the total number of dialog acts calculates (statistically weighted) to
approx. 91 percent. Thus we will only be analyzing RequestAndResponse(s)
structures with our program.

3 Implementation

3.1 Languages we used
3.1.1 XML

The Extensible Markup Language (XML) is a subset of SGML (Standard Gen-
eralized Markup Language), apart from the possibility to construct a start-
and endtag in the same brackets e.g. <document/ >, which is not permitted
in SGML. The XML 1.0 specification is released as a recommendation by the
World Wide Web Consortium [13]. Since then XML has become a universal
syntax for defining non-proprietary document markup and data formats. The
opportunity to design your own DTD (Document Type Definition) gives you a
huge flexibility to use XML. This is one of the advantages of XML in contrast to
HTML, just as the separation of content and styling, which is blurred in HTML.

The important case for our project is the provision of content management
in XML. The styling component is secondary, but still - as opposed to HTML
- mandatory. To show our results we chose CSS (Cascading Style Sheets), a
presentation through XSL (Extensible Stylesheet Language) is also possible.
By means of the stylesheet, formatting for different output media is possible,
e.g. printer or screen. More important is the construction of a reasonable DTD,
which must contain all the elements and attributes we will use to markup our
CVR transcripts. Inside the XML document itself, you need to refer to the
DTD to which the document is suited.

3.1.2 Perl

Perl stands for “Practical Extraction and Report Language”. It has become a
general purpose programming language, but it is most widely used for serious
text processing. Because of its regular expressions, Perl is very powerful in
searching and manipulating texts, and this is the main advantage for us to use
perl as our programming language.

3.2 Design of the XML structure

For a well formed XML structure a DTD which is based on a context free
grammar is essential. This context free grammar describes the hierarchical
structure of the XML tree.

The grammar which is the basis for the tree of our XML structure is derived
intuitively from the structure of the original transcripts (see appendices A and
B).

The whole transcript is comprised of lines. Each of these lines of the tran-
script contains three parts:

e a consecutive time code,

e the person who is the speaker (or in some cases a machine sounding a
warning tone) and

e the spoken message itself.

Sometimes, two or more lines form a block because they belong to a common
dialog act. The actual message can contain more than one sentence, and each
of these sentences can have its own topic.

Therefore, our XML structure starts with the < transcript >. Branch-
ing from there are the lines of the original transcript marked with < line >,
combined into < block >. A < line > consists of the three parts < time >,
< speaker > and < message >.

transcript
block A
reqres OR

™~

line

NN

time speaker message
‘ AND

sentence

If a sentence contains one or more keywords, these are marked with the
< keyword > tag. It has a required attribute, pointing out the keyword’s
possible contexts it can occur in (see appendix D). The < sentence > tag
has a required attribute as well: its sentence type (question, exclamation or
statement).

We included a < topic > tag for further extensions: when a sentence covers
more than one semantic topic it can be divided into sections.

3.3 Design of the Perl script

Since we are working with transcripts of natural speech and want to markup
relations between sentences spoken in the course of the dialog, we have to load
the whole transcript into memory at the beginning of the execution of the script.
We cannot simply mark it line by line, as we maybe could with some other text.
This enables us to jump back to previously processed pieces of the transcript.

Therefore, we internally build an array containing all the lines of the original
transcript, with each original line being one element in the array. Each of these
list elements then gets analyzed for time and speaker information as well as pos-
sible sentence separators. With this new data, the single element gets written
back to the original array, but now it is a hash with the keys time, speaker and
message, where message itself is an array of the separate sentences.

So, the original line

11:58:28 F/0 Fasten right. Approach checklist complete.

becomes a hash with the following pairs of key and values:

time 11:58:28

speaker | F/O

message | 1. Fasten right.

2. Approach checklist complete.

For a more insight view, check the annotations made in the perl script itself (see
appendix F).

10

4 Example analyzis

4.1

Original transcript

Below is the first 8 lines of the original ASCII transcript of AA261. The only
structure in this format is the use of the tabs between time, speaker and message
and the linebreak at the end of each line.

16:
16:
16:
16:
16:

16:
16:

09:
10:
10:
10:
10:

10:
10:

55
01
03
01
06

07
28

16:10:36

ASA261 Center Alaska two sixty one we are uh in a dive here
R30 Alaska two sixty one uh say again
ASA261 (unintelligible) pitch
R30 Alaska two sixty one say again sir
ASA261 Yeah we’re out of twenty six thousand feet
we’re in a vertical dive - not a dive yet -
but uh we’ve lost vertical control of our airplane
R30 Alaska two sixty one roger
ASA261 We’re at twenty three seven request uh -
yeah we’’ve got it back under control there no we don’t
(unintelligible)
R30 Alaska two sixty one uh say the altitude
you’d like to uh remain at

4.2 XML source

After processing the ASCII transcript, you get the same transcript as before
in XML, with added meta information. At first glance, this looks harder to
understand than the original. After applying an appropiate style sheet and
viewing it with a XML browser, though, it offers much more options in human

readability.

<?xml version="1.0’’ encoding="iso-8859-1"7>

<transcript>
<line>

<time>

</line>

16:09:55

</time>

<speaker>

ASA261

</speaker>

<message>

<sentence type='"statement'">

<topic>Center Alaska <keyword context='"radioNumeral'">two</keyword>
<keyword context="radioNumeral">sixty</keyword>
<keyword context="radioNumeral">one</keyword>

we are uh in a <keyword context="altitudeAbsolute,altitudeChange">

<keyword context="altitudeChange,altitudeAbsolute">dive</keyword>
</keyword> here.</topic>

</sentence>
</message>

11

<line>
<time>
16:10:01
</time>
<speaker>
R30
</speaker>
<message>
<sentence type="statement'">
<topic>Alaska <keyword context='"radioNumeral'">two</keyword>
<keyword context="radioNumeral'">sixty</keyword>
<keyword context="radioNumeral">one</keyword> uh say again.</topic>
</sentence>
</message>
</line>
<line>
<time>
16:10:03
</time>
<speaker>
ASA261
</speaker>
<message>
<sentence type="statement'">
<topic>(unintelligible) pitch.</topic>
</sentence>
</message>
</line>
<line>
<time>
16:10:01
</time>
<speaker>
R30
</speaker>
<message>
<sentence type="statement'">
<topic>Alaska <keyword context="radioNumeral'">two</keyword>
<keyword context="radioNumeral">sixty</keyword>
<keyword context="radioNumeral">one</keyword>
say again sir.</topic>
</sentence>
</message>
</line>
<line>
<time>
16:10:06
</time>
<speaker>
ASA261

12

</speaker>
<message>
<sentence type="statement'"><topic>Yeah we’re out of twenty
<keyword context="radioNumeral">six</keyword> thousand feet
we’re in a vertical
<keyword context="altitudeAbsolute,altitudeChange'">
<keyword context="altitudeChange,altitudeAbsolute">dive</keyword>
</keyword> - <keyword context="communication">not</keyword> a
<keyword context="altitudeAbsolute,altitudeChange'">
<keyword context="altitudeChange,altitudeAbsolute">dive</keyword>
</keyword> yet - but uh we’ve lost vertical control
of our airplane.</topic>
</sentence>
</message>
</line>
<line>
<time>
16:10:07
</time>
<speaker>
R30
</speaker>
<message>
<sentence type="statement'">
<topic>Alaska <keyword context="radioNumeral'">two</keyword>
<keyword context="radioNumeral">sixty</keyword>
<keyword context="radioNumeral'">one</keyword> roger.</topic>
</sentence>
</message>
</line>
<line>
<time>
16:10:28
</time>
<speaker>
ASA261
</speaker>
<message>
<sentence type="statement">
<topic>We’re at twenty <keyword context="radioNumeral">three</keyword>
<keyword context="radioNumeral">seven</keyword> request uh -
yeah we’’ve got it back under control there
<keyword context="communication'">no</keyword> we don’t
(unintelligible).</topic>
</sentence>
</message>
</line>
<line>
<time>
16:10:36

13

</time>
<speaker>
R30
</speaker>
<message>

<sentence type="statement'">

<topic>Alaska <keyword context="radioNumeral">two</keyword>

<keyword context="radioNumeral">sixty</keyword>

<keyword context="radioNumeral">one</keyword> uh say the

<keyword context="altitudeAbsolute,altitudeChange">altitude</keyword>
you’d like to uh remain at.</topic>

</sentence>
</message>
</line>

4.3 XML-to-screen output

This is a screenshot of the web browser Opera v5.11 displaying the above part
of the transcript in the XML version using a rudimentary CSS style sheet.

Opeta 5 - [http://129.70.102.7/~thomas /pjs/aa261.xml] == x|
@ Datei Bearbeiten Ansicht Nawigstion Bookmarks E-Mail Messaging MNewsgroups Fenster Hilfe ;Iilél
A a B @ <, 4 B
Meu Drucken Suchen Hotist Zuriick — Meuladen Yor Startssite 6 Gigabyte Traffic incl.
| e
oo alhttp:p’,ilzg‘?U.102.7ﬂ~thomasp’p]sfaa261‘xml j & - | «Suche mit Google> j @ - I 100% ﬂ
16:09:55 ASA26]1 Center Alaska twe sixfy oxe we are uh in a diva here =
16:10:01 R30 Alaska fwo sixiy oxe uh say again
16:10:03 ASA261 (unintelligible) pitch
16:10:01 R30 Alaska fwo sixiyv one say agai sir
16:10:06 ASA2ZE] Veah we're out of twenty six thousand feet we're in a vertical dive - naf a dive yet - but uh we've lost vertical control of our airplane
16:10:07 R30 Alaska fvio @iy oneg toger.

16:10:28 ASA2ZE] We're at twenty three seven request uh - veah we''ve got it back under control there 1o we don't (unintelligible) =
16:10:36 R30 Alaska two sixiy one uh say the alfifude you'd ke to uh remain at

4.4 Summary

The markup of the syntactic structure resp. <time>, <speaker>, <message>,
<sentence>, <keyword> etc. works correctly for more than 95 per cent of the
original lines of the ASCII texts. Especially the marking-up and categorizing
of the keywords and sentences is an enormous improvement in working with
Cockpit Voice Recordings. Now these transcripts can be searched, parsed and
compared automatically. This is important in analyzing the activities in the
cockpit and the radio communication between the involved parties.

Our plans for the future are improving the markup of the semantic structures
resp. request-response dialog structure. A better style sheet in XSL should

14

ensure a superior visualization of the results. For the perl script, a better user
interface is in work.

15

References

[1] Andre Déring, Jan Sanders, Marc McGovern: Computational Analysis of
Cockpit-Voice-Recording-Transcripts, 2001, RVS, University of Bielefeld

[2] Martin Ellermann, Mirco Hilbert: Developing an ATC Grammar using
the Review of the Cushing Grammar, 2001, RVS, University of Bielefeld,
http://www.rvs.uni-bielefeld.de/publications/abstracts.html#ATC-
grammar

[3] Keyword list,
http://www.geschichte.uni-bielefeld.de/~thomas/pjs/kwlist.txt

[4] The current version of the perl script,
http://www.geschichte.uni-bielefeld.de/~thomas/pjs/script.pl

[5] Transcript of AA261 flight,
http://www.geschichte.uni-bielefeld.de/~thomas/pjs/aa261.txt

[6] Transcript of CA676 flight,
http://www.geschichte.uni-bielefeld.de/~thomas/pjs/china676.txt

[7] Transcript of AirEx827 flight,
http://www.geschichte.uni-bielefeld.de/~thomas/pjs/airex827.txt

[8] XML version of the transcript of AirEx827 flight,
http://www.geschichte.uni-bielefeld.de/~thomas/pjs/airex827.xml

[9] XML version of the transcript of AA261 flight,
http://www.geschichte.uni-bielefeld.de/~thomas/pjs/aa261.xml

[10] The Aviation Safety Network,
http://www.aviation-safety.net/

[11] Definition of context free grammars with examples
http://www.cs.rochester.edu/users/faculty /nelson/courses/csc_173 /grammars/ cfg.html

[12] ActiveState Perl software distribution
http://aspn.activestate.com/ASPN /Perl/

[13] Definition of the XML standard
http://www.w3.org/XML/

16

Appendix A The grammar behind the XML struc-
ture

This context free grammar is derived intuitively from the structure of the orig-
inal Cockpit Voice Recorders transcripts and is the basis for our XML DTD.

G={N’ T’ R’ S}

N={TRANSCRIPT, BLOCK, REQRES, LINE, BREAK, TIME, MESSAGE, SENTENCE,
KEYWORD, SPEAKER, TEXT, CAPTAIN, FIRSTOFFICER, TOWER, OTHERSPEAKERO1,
OTHERSPEAKERO2, OTHERSPEAKERO3, OTHERSPEAKERO4, LETTERS, LETTER}

T={ a, b, ¢, d, e, f, g, h, i, j, k, 1, m, n, o, p, q, r, s, t, u, v, w, X,
y, Z’ 1’ 2, 3’ 4, 5, 6’ 7, 8’ 9’ O, :’ . 2 _}

R={ (TRANSCRIPT::=BL0OCK|TRANSCRIPT BLOCK)
(BLOCK: :=REQRES | LINE)
(REQRES: :=LINE|REQRES LINE)
(LINE: :=TIME SPEAKER MESSAGE |BREAK)
(MESSAGE: : =SENTENCE | MESSAGE SENTENCE)
(SENTENCE: : =TOPIC|SENTENCE TOPIC)
(TOPIC: :=KEYWORD | LETTERS |DOTS |KEYWORD SENTENCE | LETTERS SENTENCE |
DOTS SENTENCE)
(SPEAKER: :=CAPTAIN|FIRSTOFFICER | TOWER | 0OTHERSPEAKERO1 | 0OTHERSPEAKERO2 |
OTHERSPEAKERO3 | 0OTHERSPEAKERO4)
(BREAK: : =LETTERS)
(TEXT: :=LETTERS)
(TIME: :=LETTERS)
(CAPTAIN: :=LETTERS)
(FIRSTOFFICER: :=LETTERS)
(TOWER: : =LETTERS)
(OTHERSPEAKERO1: : =LETTERS)
(0THERSPEAKERO2: :=LETTERS)
(0THERSPEAKERO3: : =LETTERS)
(OTHERSPEAKERO4 : : =LETTERS)
(KEYWORD: : =LETTERS)
(DOTS: :=LETTERS)
(LETTERS: : =LETTER|LETTERS LETTER)
(LETTER::=alblcldlelflglhliljlk|lImlnlolplqlrisitiulviwlxlylz]
112131415lel71819101:1.1, |-)
}

S={TRANSCRIPT}

17

Appendix B The Document Type Definition (DTD)
This XML DTD is designed on the basis of the context free grammar.

<!ELEMENT transcript (block+)>

<!ELEMENT block (reqres|line)>

<!ELEMENT reqres ((line+) | (reqresx))>

<!ELEMENT line ((time, speaker, message) |break)>

<!ELEMENT message (sentencex)>

<!ELEMENT sentence (topic+)>

<!ELEMENT topic (keyword|#PCDATA|dots)+>

<!ELEMENT speaker (captain|firstofficer|tower]
otherspeaker01|otherspeaker02|otherspeaker03|otherspeaker04) >

<!ELEMENT break #PCDATA>

<!ELEMENT text #PCDATA>

<!ELEMENT time #PCDATA>

<!ELEMENT captain #PCDATA>

<!ELEMENT firstofficer #PCDATA>

<!ELEMENT tower #PCDATA>

<!ELEMENT otherspeakerO1 #PCDATA>

<!ELEMENT otherspeaker02 #PCDATA>

<!ELEMENT otherspeaker03 #PCDATA>

<!ELEMENT otherspeaker04 #PCDATA>

<!ELEMENT keyword #PCDATA>

<!ELEMENT dots #PCDATA>

<!ATTLIST sentence type (interrogation|exclamation
| statement) #REQUIRED "statement">

<!ATTLIST keyword context (C_all|C_altitude|C_absoluteAltitude
[C_relativeAltitude|C_altitudeChange|C_communication
|C_radioFrequency|C_radioAlphabet|C_radioNumeral|C_confirmation
[C_instruction|C_direction|C_north|C_nw|C_nw|C_west|C_south
|C_sw|C_se|C_east|C_left|C_right|C_up|C_down|C_directionChange
|C_distance|C_absoluteDistance|C_relativeDistance|C_distanceChange
[C_flightState|C_taxiing|C_takeoff|C_climb|C_cruise|C_approach
|C_descend|C_landing|C_emergency|C_urgency|C_goaround|C_heading
|C_absoluteHeading|C_relativeHeading|C_headingChange|C_measurement
|C_angleMeasurement |C_altitudeMeasure|C_speedMeasure
[C_heightMeasure|C_distanceMeasure|C_volumeMeasurement
|C_timeMeasurement |C_none|C_object|C_flyingObject|C_groundObject
[C_airport|C_airportObject|C_taxiway|C_runway|C_runwayObject
|C_tower|C_plane|C_terrain|C_airTrafficControl|C_permission
[C_cleared|C_notCleared|C_planePart|C_controlableSystem
|C_staticSystem|C_position|C_absolutePosition|C_relativePosition
|C_positionChange|C_mark|C_threshold|C_quality|C_speed
|C_absoluteSpeed|C_relativeSpeed|C_speedChange|C_technical|C_weather
|C_fogl|C_ice|C_rain|C_snow|C_visibility|C_wind|C_windshear|F_taxiing
|F_takeoff |F_climb|F_cruise|F_approach|F_descend|F_landing|F_goaround
|F_emergency|F_urgency |F_all|F_none) #REQUIRED "C_all">

18

AOA
above
affirmative
airport
airspeedindicator
alpha
altitude
approach
approaching
approved
autopilot
baseleg
below
block
boots
brake pressure
brake
bravo

bugs

call
captured
centerLine
charlie
check
checklist
circuit
clearance
cleared
climb
closer
compressor
contact
copy
course
crosswind
decrease
degrees
delta
descend
descending
distance
dive

down

east,

eastbound
echo

eight
eighty
elevator
emergency
engine
field

fifty

five

flaps
flight level
fly

flying
follow
forward
four
fourty
Foxtrot
frequency
fuel

gear

go around
golf
heading
hold

hotel
hundred
hydraulics
inbound
igniter
ignition
increase
india
juliett

kilo

knots
landing
left

lima

lower
maintain
mark
marker

Appendix C List of keywords

mayday
mike

miles
minutes
nine
ninety
ninty

no

nose

north
northbound
november
ok

one

oscar

pan

papa
power
proceed
quebec
rain
raining
rate of decend
recleared
reduce
reducing
right
romeo
roger
rudder
runway end
runway
seven
seventy
shears
showers
sierra

six

sixty

south
southbound
speed
speedbrake
spoilers

19

This list of keywords was built intuitively using an iterative algorithm.

stabilizer
stand by
standing by
start
takeoff
tango
taxiway
ten

thirty

three
threshold
throttles
thousand
thrust lever
thrust
traffic

trim

turn
turning Point
turning
twenty

two
understood
uniform

up

vector
victor
visibility
weather
west
westbound
whiskey
wind
windshears
windshield wipers
xray
yankee

yaw dampers
yes

Zero

zulu

Appendix D Contexts

These contexts were determined together with the authors of [1] by analyzing
the list of keywords.

C_all C_altitudeMeasure
C_altitude C_speedMeasure
C_absoluteAltitude C_heightMeasure
C_relativeAltitude C_distanceMeasure
C_altitudeChange C_volumeMeasurement
C_communication C_timeMeasurement
C_radioFrequency C_none
C_radioAlphabet C_object
C_radioNumeral

C_confirmation

C_flyingObject
C_groundObject

C_instruction C_airport
C_direction C_airportObject
C_north C_taxiway

C_nw C_runway

C_nw C_runwayObject
C_west, C_tower

C_south C_plane

C_sw C_terrain

C_se C_airTrafficControl
C_east C_permission
C_left C_cleared

C_right C_notCleared

C_up C_planePart
C_down C_controlableSystem

C_directionChange

C_distance

C_absoluteDistance
C_relativeDistance
C_distanceChange

C_flightState

C_staticSystem
C_position
C_absolutePosition
C_relativePosition
C_positionChange
C_mark

C_taxiing C_threshold
C_takeoff C_quality
C_climb C_speed
C_cruise C_absoluteSpeed
C_approach C_relativeSpeed
C_descend C_speedChange
C_landing C_technical
C_emergency C_weather
C_urgency C_fog
C_goaround C_ice
C_heading C_rain

C_absoluteHeading C_snow
C_relativeHeading C_visibility
C_headingChange C_wind
C_measurement C_windshear
C_angleMeasurement

20

Appendix E Flight phases
These flight phases were taken from the state machine as described in [1].

F_taxiing
F_takeoff
F_climb
F_cruise
F_approach
F_descend
F_landing
F_goaround
F_emergency
F_urgency
F_all
F_none

21

Appendix F Source code of the Perl script

#!perl
#BEGIN SUBROUTINES

this subroutines gets the argument message (type: array of strings)

elements of message are sentences. each gets split into words (token: whitespaces)
and is compared with the elements in the keywordarray. if found, then marked up
and written back into variable.

finally returns a string containing the whole massage marked with everything.

sub markUpKeywords

{

my (@sentences) = @_;

my ($sentence, @words, $word, $keyword, $message);

H H H H R

foreach $sentence (@sentences)

{
Q@words = split(/\b/,$sentence,);

marks the keyword with context included as attribute to the keyword tag
foreach $keyword (keys %kwHoL)
{

$sentence = "";

foreach $word (@words)

{

if ($word="/$keyword/gi)
{
Q@keywordattribsarray = @{$kwHoL{$keyword}};

foreach $keywordattrib (@keywordattribsarray)
{
if ($keywordattribs ne "")
{ $keywordattribs = $keywordattribs.",".$keywordattrib; }
else
{ $keywordattribs = $keywordattrib; }
}

$word = ¢ ‘<keyword context=\"$keywordattribs\">".$word."<\/keyword>";
$keywordattribs = "";
}

$sentence = $sentence.$word;

}

if ($sentence ="/<interrogation \/>/) { $sentence = "<sentence
type=\"interrogation\"><topic>".$sentence."\7<\/topic><\/sentence>"; }

elsif ($sentence ="/<exclamation \/>/) { $sentence = "<sentence
type=\"exclamation\"><topic>’’.$sentence."!<\/topic><\/sentence>"; }

22

else { $sentence = "<sentence type=\"statement\"><topic>’’.
$sentence."\.<\/topic><\/sentence>"; }

$sentence ="s/<interrogation \/>|<exclamation \/>|<statement \/>//g;

$message = $message.$sentence;

}
push Omessage, $sentence;
#$message = "<message>".$message."<\/message>";

return Q@message;

builds up an hash out of our keywords
sub buildKeywordHash
{
while(defined ($keywordline=<KWIN>))
{
chomp ($keywordline) ;
@hashline = split(/\[/,$keywordline,2);
$hashline[1] ="s/(\1I1\D//g;
@contexts = split(/\:/,$hashline[1],);

$kwHoL{$hashline[0]} = [@contexts];

reading in of command line arguments
sub readCmdLine

{
foreach $cmdarg (QARGV)
{

if ($cmdarg ="/\A-i/) # input

{
$inputfile = $cmdarg;
$inputfile ="s/\-i//;

}

elsif ($cmdarg =~/\A-k/) # keywords

{
$keywordfile = $cmdarg;
$keywordfile ="s/\-k//;

}

elsif ($cmdarg =~/\A-o/) # output

{
$outputfile = $cmdarg;
$outputfile ="s/\-0//;

}

elsif ($cmdarg =~/\A-h/) # cmd line help

{
typeHelp Q) ;
goto END;

23

}

}

if ($inputfile eq "")

{
print "\nNo inputfile specified\.\nTerminating\.\.\.\n\nUse \-h for help\.\n";
goto END;

}

}

reading in of the file config.cfg for global configuration
sub readConfig
{
open(CFGIN, "<config.cfg");
while(defined($configinput=<CFGIN>))
{
chomp ($configinput);

determines which file to write to (just rename input to .xml or
specified on command line)
if ($configinput ="/generate_output_filename\: yes/gi)
{

if ($outputfile eq "")

{

$outputfile = $inputfile;
$outputfile ="s/\.txt/\.xml/i;

}
}
elsif ($configinput ="/keyword_file\:/gi)
{

$keywordfile = $configinput;

$keywordfile ="s/keyword_file: //gi;
}
determines the path to the style sheet
elsif ($configinput ="/stylesheet_path\:/gi)
{

$stylesheet = $configinput;

$stylesheet ="s/stylesheet_path\: //gi;
}

}

close (CFGIN) ;
}

checks whether the variables are set
sub variableCheck

{
if ($keywordfile eq "")
{

24

print "\nNo keywordfile specified\.\nTerminating\.\.\.\n\nUse \-h for help\.\n";
goto END;

}

elsif ($outputfile eq "")

{
print "\nNo outputfile specified\.\nTerminating\.\.\.\n\nUse \-h for help\.\n";
goto END;

}

elsif ($stylesheet eq "")
{ $stylesheet = "transcript\.css"}

prints the help to the console
sub typeHelp

{

print "\n";

print "Available options\/switches:\n";

print "‘\-i\: specifies input filename\n";

print "\-o\: specifies output filename\n";

print "\-k\: specifies keyword list filename\n";

print "\n";

print "Do not put blanks between switch and filename\!";
}

SCRIPT BODY

FILEHANDLES
$keywordfile = "";
$inputfile = "";
$outputfile = "";
Otranscript;

readCmdLine() ;
readConfig();

variableCheck() ;

open (KWIN, "<".$keywordfile); # open handle to keyword list
open(0UT, ">".$outputfile); # open handle to output file
open(IN, "<".$inputfile); # open handle to input ascii transcript

Otranscript_in = <IN>;
Otranscript_out;

foreach $line (@transcript_in)

{
chomp ($line);

$line ="s/\.\.+/<dots \/>/g; # replaces dots with a tag

25

create 3 strings out of line

($time, $speaker, $messagestring) = split(/\t/,$line,3);
$time = "<time>".$time."<\/time>";

$speaker = '"<speaker>".$speaker.'"<\/speaker>";

add a tag to the punctuation
$messagestring ="s/\?7/<interrogation \/>\7/g;
$messagestring ="s/!/<exclamation \/>!/g;
$messagestring ="s/\./<statement \/>\./g;

splits the message into the single sentences
@sentencearray = split(/\7[!I\.[\?\z|!\z|\.\z/,$messagestring) ;

@temp = markUpKeywords(@sentencearray) ;

push @transcript_out, { %zeile };

}

for $i (0 .. $#transcript_out)

{
print OUT $transcript_out[$i]{time};
print OUT $transcript_out[$i]{speaker};
print OUT "<message>";

foreach $element (@{$transcript_out[$i]{message}})
{
print OUT $element;

}
print OUT "<\/message>";

print OUT "\n";

END:
nothing

26

