
Rechnernetze und
Verteilte Systeme

Hot Issues in Software Safety Standardisation

Peter Bernard Ladkin

University of Bielefeld and Causalis Limited

16 October 2012

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 1 / 35

Rechnernetze und
Verteilte Systeme

Three Issues

The German standards committee for functional safety of E/E/PE systems
has a SW ”working group”. We have been working hard on two issues at a
rate of 6-7 meetings per year for the last three years. There is another
important general issue which has been raised through the IEC.

Practical, rigorous software assurance techniques
I lumped together in IEC 61508:2010 as “formal methods” and treated

as if they were one technique

How to assess previously-used SW?
I You’ve got something. It has worked well forever in similar applications.

Do you have to throw it away and develop again from scratch?

The role of human factors in functional safety
I Not software-specific. I won’t address it in this talk.

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 2 / 35

Rechnernetze und
Verteilte Systeme

Requirements and Guidance

A helpful standard fulfils two roles
I it requires: it says what people must

F achieve (“goal-based”)
F do (“process-based”)

I it guides: it indicates how to do something if you don’t already know
how

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 3 / 35

Rechnernetze und
Verteilte Systeme

References

On assurance via practical rigorous methods in industrial use
I PBL, Functional Safety of Software-Based Critical Systems, March

2011
I http://www.rvs.uni-bielefeld.de/publications/Papers/

LadkinAdaConnection2011.pdf

On qualifying SW “black box” through previous successful use
I DKE, Software elements for safety-related applications, September

2012
I http://www.vde.com/en/dke/DKEWork/NewsfromtheCommittees/

2012/Pages/automation.aspx

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 4 / 35

Rechnernetze und
Verteilte Systeme

Progressive directions

For the Uni BI link
I Go to www.rvs.uni-bielefeld.de
I From the links left, choose Publications
I Scroll down a bit to What’s New
I Scroll down until you find the paper “Functional Safety....”

For the DKE link
I Go to www.dke.de
I choose“English” (above right, small print)
I Look under “News” (column under the banner)
I Find “software elements for safety-related...”
I click “more”

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 5 / 35

Rechnernetze und
Verteilte Systeme

Human Requirements Conflicts, Example 1

From my experience 15 years ago
I Complex, possibly perfect, specification language and checking/

verification methods
I “Methods” not described
I I devised some, with large hints from the developer
I It worked!

F including automated proof-checking: Mark Saaltink had the Eves prover
check a complex proof in less than one person-day, including debugging
the proof

F but I couldn’t have done it
F using a proof checker remains a singular skill
F I could see specialist shops doing it

I It proved difficult to transmit to students
I I was one of about a half-dozen people who could use it
I And even I probably can’t, any more

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 6 / 35

Rechnernetze und
Verteilte Systeme

Human Requirements Conflicts, Example 2

“Formal methods don’t work!” (reputed: B. Boehm, 1980’s)

Some of us: “they do, you know!” (Sir Tony Hoare, Martyn Thomas,
AdaCore, me, my pals, my cat)

I “But we can’t learn them”
I “We’ll develop some you can learn”
I “It costs too much (people, time) for the benefit”

Moral question: should we any longer be building systems which we
don’t guarantee are fit for purpose?

Business/social question: why does it (still) “cost too much for the
benefit”?

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 7 / 35

Rechnernetze und
Verteilte Systeme

Aside: Resolving Example 2

SW is a mathematical object (Sir Tony)

But this doesn’t always help evaluation (many C compilers)

Claim: SW behavior can be assured fit-for-purpose in so far as the
SW (behavior) can be -is- construed as a mathematical object

Moral consequence: SW should be written in such a way as to enable
its evaluation as a mathematical object

Some large companies are heavy users of formal methods in this sense
I Microsoft: methods to evaluate third-party device drivers
I Airbus: “high-level” state-machine-type SW development with code

generation

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 8 / 35

Rechnernetze und
Verteilte Systeme

Appropriately “Safe” Software

Software whose operation is appropriately free of dangerous behavior

Two observations –
I define “appropriate”
I software execution by itself is not “dangerous”

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 9 / 35

Rechnernetze und
Verteilte Systeme

Software Involvement in Safety

software behavior causes behavior of kit (hardware)

this kit behavior might be dangerous

it follows that dangerous behavior of SW is derivative

the requirements on non-dangerous behavior of SW are derivative

but that is only part of the story
I Daniel Jackson claims, on the basis of the above, that all specific

safety analysis may be done before the software requirements are given
to the designer

I But some appropriate safety-analysis methods don’t respect this
division of labor (OHA, for example)

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 10 / 35

Rechnernetze und
Verteilte Systeme

Software Behavior

if it is possible for SW to engage in behavior categorised derivatively
as “dangerous”

then it is a priori conceivable that this behavior might be exhibited at
any time

because “go to” is a priori possible

and the data to be operated on/with might be unfortunately apt

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 11 / 35

Rechnernetze und
Verteilte Systeme

Software Assurance

so ruling out dangerous behavior caused by SW means being fairly
convinced that the operation of the SW has certain properties which
prevent such situations from arising inappropriately often

assurance consists in part in establishing such properties

Please note: you establish properties by testing and assuring them
directly

how do you do that? Answer: for many useful properties, it is done –
somewhere on this earth

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 12 / 35

Rechnernetze und
Verteilte Systeme

General Software Assurance

there are general things that SW can do that you don’t want

for example, run-time errors that cause a processor exception

then there are specific things, derived from the safety requirements of
the kit operated by the SW

I think it is practically worthwhile to treat these two aspects
differently

I dependability1
I dependability2

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 13 / 35

Rechnernetze und
Verteilte Systeme

Two other aspects

Dependable SW does what we want it to do

But in safety we also need that
it doesn’t do what we don’t want it to do

I How do we know what we don’t want?
F HazAn

I How do we assure ourselves that we know?
F Assured properties of HazAn

I How do we tell that the SW doesn’t do any of that?
F assured properties of the SW

As Dijkstra pointed out, it is very hard to establish a negative

This isn’t the whole story: we must also consider fail-operational
systems, such as building emergency functions.

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 14 / 35

Rechnernetze und
Verteilte Systeme

Dependability1

formal methods are used here for decades

namely high-level languages supported by compilers and linkers

Example: my C compiler does what I want it to do
I Do I know what I want, exactly? Yes.
I How do we tell the SW does it? Ummm. (BMW’s experience was

recounted at SAFECOMP 2007)

But it also doesn’t do what we don’t want it to do
I How do we know what we don’t want? Trickier.
I How do we assure ourselves that we know? I don’t think we do
I How do we tell that the SW doesn’t do any of that? Ten years ago, it

did. 80% of internet exploits were buffer overflow exploits
I We have recently got a lot better (Microsoft’s VCC)

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 15 / 35

Rechnernetze und
Verteilte Systeme

How Good Are We?

.........after all these years? Let’s go back a decade and more

Major military airplane, SW developed according to civil standards
(DO-178B)

SW developed according to DA Level A and B

No significant quality difference found between Levels A and B

“Module” quality generally very poor
I Let me call the pieces of SW “modules”, not a technical term here
I The worst had a defect rate of 1 in 10 lines of executable code (LOC)
I The best had a defect rate of 1 in 250 LOC
I Errors found are a litany of run-time-type problems, including some

that should count as solved since the late 1960’s but apparently aren’t

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 16 / 35

Rechnernetze und
Verteilte Systeme

Types of Errors 1

(With thanks to Martyn Thomas, Andy German, Dewi Daniels)
The following defects were among those reported in the software after
certification:

Erroneous signal de-activation.

Data not sent or lost

Inadequate defensive programming with respected to untrusted input
data

Warnings not sent

Display of misleading data

Stale values inconsistently treated

Undefined array, local data and output parameters

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 17 / 35

Rechnernetze und
Verteilte Systeme

Types of Errors 2

Incorrect data message formats

Ambiguous variable process update

Incorrect initialisation of variables

Inadequate RAM test

Indefinite timeouts after test failure

RAM corruption

Timing issues - system runs backwards

Process does not disengage when required

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 18 / 35

Rechnernetze und
Verteilte Systeme

Types of Errors 3

Switches not operated when required

System does not close down after failure

Safety check not conducted within a suitable time frame

Use of exception handling and continuous resets

Invalid aircraft transition states used

Incorrect aircraft direction data

Incorrect Magic numbers used

Reliance on a single bit to prevent erroneous operation

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 19 / 35

Rechnernetze und
Verteilte Systeme

How Good We Are, cont’d

One airplane: 1 in 250 LOC or worse

Rumored industry standard for safety-critical SW: // 1 in 1000 LOC
to 1 in 10,000 LOC

Best documented quality: 1 in 25,000 LOC (guess who!)

I say we aren’t very good. Still.

This is a public example. I have recent private examples.

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 20 / 35

Rechnernetze und
Verteilte Systeme

What To Do About It

It must be a people problem
I There is no other explanation for why mistakes are still being made

whose technical solution has been known for four decades

People problems are notoriously intractable

Address the memes and mantras

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 21 / 35

Rechnernetze und
Verteilte Systeme

Memes and Mantras

Actually, I prefer the term “trope”

A meme is an idea that promulgates (Dawkins and Dennett)

A mantra is a short statement or belief (see below)

A trope is a mantra with reasoning
I “Formal methods don’t work”. Depends.

F Dependability1: eliminating run-time errors is practical
F Dependability2: Rigorous verification that the design spec fulfils the

requirements spec is mostly impractical

I “Programming language Q is as good as programming language S if
you take care”.

F Dependability1 issue
F Taking care didn’t help with all those errors in the aircraft SW.
F If the client had insisted on using a strongly-typed language with

adequate compiler, most of them could not have occurred

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 22 / 35

Rechnernetze und
Verteilte Systeme

Memes and Mantras, continued

“ Our SW has been proven reliable in use”
I Can you show us the statistics?

F Mostly not. Or very poor. Incomplete, etc.

I How do we know you have reliably detected all erroneous behavior?
F Mostly, we don’t
F Because you likely haven’t
F Only those failures were noted which happened to result in something

noteworthy

I Is your statistical reasoning valid?
F Most people don’t distinguish assertion from confidence
F they are inverse in strength on the same data
F rigorous testing:

high confidence that reliable to one failure in 10,000 ophours

very low confidence in 1,000,000 ophours
F no guidance in IEC 61508:2010 as to acceptable confidence ranges

I Involves both Dependability1 and Dependability2

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 23 / 35

Rechnernetze und
Verteilte Systeme

What Not To Do About It

Write a generic software safety standard that is 50pp long
I That is in part incoherent - experts disagree on whether safety

requirements traceability to SW is assured
I Based on a set of concept definitions that are sophomoric (if you

happen to study a subject for which analysing definitions is essential)

Then, thirteen years later, extend it to 110pp!
I Not my fault! I came in later

Some prominent SW specialists think the standards process is broken

How can the standard be fixed?
I Shorten it
I Make it readable and coherent
I Address dependability1 issues
I Address dependability2 issues as far as possible
I Enumerate the state of the art where one exists

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 24 / 35

Rechnernetze und
Verteilte Systeme

A Generic Safety Standard

Determine what we don’t want the system to do (Accidents)
I As completely as possible
I Provide the assurance that you have everything

Determine how it could happen (Hazards)
I As completely as possible
I If you go too far, that’s OK
I Provide the assurance of coverage (completeness)

“Apportion” the hazard behavior to the system components
(including SW)

I Show the apportionment covers the hazards

For the SW, indeed any component: repeat the above

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 25 / 35

Rechnernetze und
Verteilte Systeme

Bringing in Architecture

SW has four general life stages
I Requirements development and specification
I Design specification
I “Source” code: more generally, the intermediate constructed object
I The object code (linked)

Apply the generic method to these four stages

Hint: you pretty much have to use formal refinement

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 26 / 35

Rechnernetze und
Verteilte Systeme

Bringing in Architecture

So, for example, you need

To assess requirements

Compare design against requirements

Compare source code against design

Compare object code against source code

Consider run-time monitoring

There are 26 industrially-mature steps and techniques which can be
applied.

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 27 / 35

Rechnernetze und
Verteilte Systeme

26 Methods

1. Rigorous functional requirements specification (FRS)

2. Formal FRS analysis (consistency; completeness)

3. Rigorous safety requirements specification (FSRS)

4. Formal FSRS analysis

5. Automated proving/proof checking of critical FRS, FSRS properties

6. Formal modelling FRS, FSRS, model checking, model exploration

7. Rigorous design specification (FDS)

8. Rigorous FDS analysis

9. Automated proving/proof checking that FDS fulfils FRS/ FSRS

10. Formal modelling, model checking, model exploration of FDS

11. Determininistic static analysis of FDS
(information flow, data flow, possibilities of run-time error)

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 28 / 35

Rechnernetze und
Verteilte Systeme

26 Methods, continued

12. Codevelopment of FDS with Executable Source Code (ESC)

13. Automated source-code generation from FDS or intermediate
specification (IS)

14. Automated proving/proof checking of fulfilment of FDS by IS

15. Automated verification-condition generation from/with ESC

16. Rigorous semantics of ESC

17. Automated ESCL-level proving /proof checking of properties
(such as freedom from susceptibility to certain kinds of run-time error)

18. Automated proving/proof checking of fulfilment of FDS by ESC

19. Formal test generation from FRS

20. Formal test generation from FSRS

21. Formal test generation from FDS

22. Formal test generation from IS

23. Formal test generation from ESC

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 29 / 35

Rechnernetze und
Verteilte Systeme

26 Methods, continued

24. Formal coding-standards analysis (SPARK, MISRA C, etc)

25. Worst-Case Execution Time (WCET) analysis

26. Monitor synthesis/runtime verification

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 30 / 35

Rechnernetze und
Verteilte Systeme

Example — Ontological Hazard Analysis

Rechnernetze und
Verteilte Systeme

Introduction — Ontological Analysis

Safety Reqs 0 Level 0

Safety Reqs 1 Level 1

Safety Reqs 2 FA

FE

Level 2

Safety Reqs 3

FE

FA Level 3

SPARK-Annotations Implementation SPARK-Code

Analysis

Proof Refinement Proof
Analysis

Proof

Refinement

Proof

Analysis

Proof

Refinement

Proof

Analysis

Proof Translation into Code ProofAnalysis

Bernd Sieker, Peter Ladkin (Causalis Limited) A Rigorous Approach to Safety Analysis November 2007 4 / 51

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 31 / 35

Rechnernetze und
Verteilte Systeme

“Black Box” Assurance

Using SW which has been successfully used before

No access to the logic of the code
I you must interface to other proprietary SW
I you want to use the interface that has been successfully used before
I the manufacturer gives you the interface specification

The raw statistics are daunting
I At the 95% confidence level, 3 billion hours of fault-free operation

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 32 / 35

Rechnernetze und
Verteilte Systeme

More on the Statistical Inference

At the 95% confidence level, 3 billion hours of fault-free operation

At the 99% level, 4.6 billion hours

comes from the exponential model of SW faults

“the exact operational profile... must be used, and used exactly”
(Bev Littlewood) for valid inference from previous to future use

that involves (IEC 61508:2010) “clearly restricted and specified
functionality” and operational conditions “sufficiently close to” those
of previous use

it involves rather more than that! (German committee)

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 33 / 35

Rechnernetze und
Verteilte Systeme

Statistical Inference, continued

It involves (redaction of German committee observations)
I all future combinations of input data having been proven-in-use for

long enough
I all future sequences of function calls
I temporal relations of those sequences
I identical environment, configuration, SW interfaces, libraries, OS and

compiler
I plus written assurance: complete description of conditions of use,

rigorous specification, etc

this seems to be a hugely high hurdle

very few companies, if any, have this level of detail about their
previous SW operations

the big, unanswered, question: What to do?

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 34 / 35

Rechnernetze und
Verteilte Systeme

Finis

Though sketchy, this talk is long enough

The technical material is or will be available on the WWW

The important thing is that people who are interested and concerned
know it is there, and how to get to it

...... and are motivated to engage in the process of improving matters

Thanks for listening!

Peter Bernard Ladkin (UniBI/Causalis) Hot Issues in Software Safety Standardisation 16 October 2012 35 / 35

