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In Bielefeld, we teach Informatics (which others call Computer Science) to Bachelor's degree level 
in four degree courses: Informatics for the Natural Sciences (INS), Cognitive Informatics (CI), 
Bioinformatics and Genomics (BIG), and Media Informatics and Design (MID). Informatics for the 
Natural Sciences combines Informatics with studies in one of the natural sciences (Physics, 
Chemistry or Biology) or linguistics. Cognitive Informatics is aimed towards artificial cognitive 
functions in anthropomorphic robotics. Bioinformatics is, I hope, self-explanatory nowadays. Media 
Informatics is aimed at artists who wish to use new electronic devices for their work – this includes 
film and photography, since nowadays much work, editing and so forth, is mediated through digital-
electronic HW and SW.

The coursework is divided into compulsory, constrained-elective, and purely elective (these are 
more or less anything throughout the university, but for limited credit). 

Logic Courses in Bielefeld Informatics

Logic used to form part of a Theoretical Informatics course (which also taught Automata Theory 
and the Chomsky Hierarchy of Languages in the customary breadth). See below for details.

Boolean logic for circuit design is taught in a Computer Architecture course which is compulsory 
for the same degree courses as the Theoretical Informatics course. See below.

I developed additionally a two-semester elective module (two courses) in Applied Logic because it 
seemed to me, first, that our students were to my mind not adequately learning the customary 
features of formal syntax and formal semantics in formal languages in order to be able to use these 
as (I thought) customary in informatics. The first semester concentrates on propositional logic, in its 
Hilbert-style (axiomatic), Gentzen-style (both natural deduction and sequent-calculus) and Scott-
style (sequent calculus as “consequence relation”) formulations, and the exercises are formal 
inference and intermodal comparison, including with formally weaker logics such as intuitionistic 
propositional logic. The second semester introduces normal modal logics, their syntax, Kripke 
semantics and some uses, including temporal logic and a selection from such topics as BDI 
modelling of intentions, “gap” (many-valued, such as the Łukasiewicz Ln logics, or similar Kleene 
logics) and “glut” (paraconsistent) propositional logics and their technical relations, logics of 
decision and probability (useful for cooperative decision-making, and for decision-making in 
situations of uncertainty) and potentially others.

I have had philosophy students take this module; indeed, the first students to take it were all 
philosophers.

Besides the two core courses in Applied Logic, I offer seminars entitled Themes in Applied Logic Z 
(where Z is a Roman numeral currently between I and VI), which consider various logics, and 
aspects of logic, not already covered in the courses Applied Logic I and Applied Logic II. Few 
students have taken these seminars thus far. 

Change in Degree Courses



German universities have changed in the 21st century to a Bachelor's/Master's model, dependent on 
accumulating Credit Points for individual courses, with per-course evaluation, to facilitate 
movement of students and transfer of academic achievement amongst universities throughout 
Europe. This is in general a good thing, but adaptation was hard, in particular because few German 
academics have hands-on experience with individual course evaluation and Bachelor/Master 
degree-course regimes and therefore lacked intuition for the advantages and pitfalls. 

After our first pass at this, the Bielefeld Informatics part of the Technical Faculty organised a day 
retreat some years ago to discuss curricula. The curriculum of Theoretical Informatics was 
discussed, and it was agreed to cover just the automata and languages theory in the Theoretical 
Informatics course, and let the logic be covered by my Applied Logic module (or at least the first 
course of it). 

Theoretical Informatics is required for two of our four Bachelor's degree courses, but somehow 
Applied Logic remains an elective for all, rather than compulsory. I recently asked the Dean and 
others how this came to be; people seemed to be unaware of the situation and I have found no one 
to give an answer as to how the decision was made.

The Issue, And How It Arose

I think some understanding of the mechanisms of formal logic is essential to any Informatics 
degree curriculum. Not all my colleagues agree. Indeed, having discussed it in one faculty meeting 
and one meeting of the curriculum committee, I would guess that nobody agrees. This note is an 
attempt to say why it is essential. I refer below to the assertion in bold font as the Thesis.

There is a reason why the question arises now. I was recently informed by a student working in my 
group that he had applied to another university in Germany well-known for its technical 
informatics, the Technical University of Braunschweig, for an Informatics Master's degree course, 
and been informed in a telephone call that he didn't appear to have enough logic to be admitted. He 
noted that he was currently taking my logic course, as well as one in the philosophy department, 
and was subsequently admitted provisional on successful completion. I thought it anomalous that 
we could be conferring students with a Bachelor's in Informatics who didn't have enough 
background in the fundamentals to continue study elsewhere. The majority of my colleagues don't 
appear to find this problematic – indeed, I appear to be alone in my view that this is anomalous. 
Discussions amongst my colleagues, though, as well as the information from my student, lead to the 
conclusion that study in logic appears to be the only systematic problem.

Before discussing the importance of logic, I briefly indicate our current curricula.

Summary of Bielefeld Informatics Compulsory Courses

Coursework is planned ideally over six semesters, although people do take longer. INS, CI and BIG 
study Algorithms and Data Structures using the programming language Haskell in the first 
semester, and continue with Object-Oriented Programming in Java in the second semester, 
meanwhile taking compulsory mathematics courses. MID is similar but has specially-adapted 
courses. All continue in the third and four semesters with a group SW project involving UML and 
Java, called “Techniques of Project Development”, as well as Databases. In addition, INS and CI 
study Theoretical Informatics, Algorithmics, Computer Architecture, Operating Systems, and take a 
Digital Electronics Lab, while BIG and MID study a condensed version of Architecture/OSs. BIG 
study Sequence Analysis and MID Human-Machine Interaction. CI study Foundations of Artificial 
Cognition. The fifth and sixth semesters are electives of various sorts, plus work on a short thesis.



Logic in Bielefeld Informatics Courses

Logic occurs in just three places in our compulsory courses. 

First, a very brief overview is given in the Mathematics courses in the first two semesters for INS 
and CI (I don't know about BIG and MID). These courses are taught by the Mathematics 
Department, and I think it would be fair to say that no one who teaches it really knows of the 
applications of logic in Informatics, except for the traditional connection with digital logic. Students 
persistently tell me that they learn nothing about how to apply logic in their mathematics study. 

Second, Boolean logic is taught as usual in the Computer Architecture course, taken by INS and CI. 
Karnaugh Diagrams are taught, as well as Quine-McCluskey minimisation, and the usual stuff. The 
connection with propositional logic is made, but not necessarily practiced. BIG and MID take a 
reduced course, but I don't know how much practice is required.

Third, the logic formerly taught by my colleagues in Theoretical Informatics (comprising the syntax 
of propositional logic, truth tables, the language of predicate logic) is now taught to CI in the 
compusory course  Foundations of Artificial Cognition.

A Brief, Crude History of Logic in Computing

Historically, the formal mathematics of computable functions in the twentieth century is 
inextricably tied up with formal logic. The three formal models of computing proposed in the 
1930's were Lambda Calculus (Church, a logician), the general recursive functions (Gödel, also a 
logician) and Turing Machines (Turing). Turing is primarily known for his Machines, his Test (for 
when an agent with whom one is interacting verbally can reasonably be regarded as “intelligent”) 
and his codebreaking skills (in the war effort at UK's Bletchley Park). But he also worked in logic, 
amongst other things proving the undecidability of (classical) Predicate Logic. When I was a 
student in the 1970's, the theory of computable functions was considered part of Mathematical 
Logic.  I took courses from Turing's PhD student Robin Gandy. Now, the theory of computable 
functions has expanded and takes place as much in Theoretical Computer Science. 

Logic was in the foundations of Artificial Intelligence (AI), not only through a connection with 
Turing but also through the influence of John McCarthy, who not only turned the lambda calculus 
into a programming paradigm through his language LISP, but also formulated problems in AI 
amenable to a solution in applied propositional, predicate and even higher-order logic. Nowadays, 
the kinds of solutions to questions of artificial intelligence which arise from manipulating symbols 
which have some connection with a meaning are called Symbolic Artificial Intelligence. 

At the end of the 1960's, Bob Floyd and Tony Hoare independently showed how one may verify 
that imperative programs actually did what one wanted them to do, through (now) so-called Floyd-
Hoare Logic, in which a proof that a program in an imperative language did what one wanted it to 
do was built up incrementally from considerations of what each imperative statement in the 
program accomplished behaviorally. This notion of action was given by describing before and after 
states in the language of predicate logic, so-called pre- and post-conditions. Much imperative- 
program verification nowadays still uses an adapted Floyd-Hoare paradigm. Program verification of 
some sort is essential for ensuring the dependability of software. Temporal Logic, a variety of 
modal logic in which the modality generalises over time, has been used extensively to verify 
algorithms in concurrent computation, in which two or more processors (or agents) are operating at 
once and need to coordinate.



Again in the 1960's, Ted Codd at IBM in California invented a paradigm for data bases, very large 
collections of data with myriad properties (“attributes” in database-speak), called Relational 
Databases, along with a theoretical query language called Relational Algebra (not to be confused 
with Relation Algebra, which is a branch of Algebraic Logic). The theory of Relational Databases 
was widely extended by the logician Ron Fagin from the 1970's, and relational databases gradually 
became ubiquitous. Halpern et al. point out that the common (ubiquitous?) database query 
languages SQL and QBE are “syntactic variants of first-order logic” 
http://works.bepress.com/neil_immerman/1/  .

Why Is Logic, Along With An Ability To Use It, Essential?

Logic has a variety of current applications in Informatics at any level.

First, an understanding and facility with formal languages of description (declarative languages, for 
short FDL) and their semantics (formal definitions of meaning) is required for specifying what SW 
is supposed to do, and indeed for checking that it has done it.

Second, defining and discovering what it is you want SW to do, and how to make sure it does all of 
what you want and none of what you don't want, nowadays involves various forms of simulation 
and modelling of the intended operating environment, discovering solutions to and constraints on 
issues which arise, and transforming those somehow, accurately, into requirements of software 
artifacts (and of course checking that the transformation is accurate). This is nowadays called 
“model-based development” (MBD). It is unthinkable to engage in MBD without some sort of 
facility with some FDL and its semantics, or indeed many such. 

Third, understanding and using Relational Databases requires some sort of facility with query 
languages such as SQL and QBE, and as noted these are syntactic variants of the FDL Classical 
Predicate Logic. 

Fourth, studies in artificial cognition require some sort of facility with dealing with intentions and 
intensional acts (the “s” is crucial!), such as that offered by BDI concepts. BDI is formally a modal 
logic; understanding and facility with such is therefore very helpful. 

Fifth, it is widely recognised nowadays that electronic HW (microprocessor) designs has become 
too complex to be effectively checkable “by hand”. Automated methods are essential, and those 
methods are exclusively based on formal logical languages, both for positive verification (in which 
a desired property is proved to hold from known properties of a design) and for model-checking (in 
which an undesired property is shown to be absent through enumerating the possibilities in which it 
might be present and showing it isn't). HW design checking is a complex, specialist process whose 
technology goes way beyond that teachable in an undergraduate informatics course, but it is an 
essential part of informatics, even outside of chip manufacturers.  See Section 6 of Halpern et al. 
(op. cit.). 

Applications to Curriculum

It is generally regarded that an ability to design and write SW which is somehow fit for its intended 
purpose is one of the achievements of pursuing a degree course in Informatics successfully. As 
indicated above, logic has been successfully applied to ensure dependability. The question here is 
whether some facility with logic is essential to such endeavor.

It is generally thought nowadays that a facility with handling databases requires skill with query 
languages such as SQL and QBE. Since these are syntactic variants of FOL, any skills with FOL 

http://works.bepress.com/neil_immerman/1/


should transfer directly. One must, however, be aware of a possible translation problem, such as that 
between circuit logic (Boolean logic) and propositional logic, and thereby make explicit effort to 
facilitate easy translation. 

Although verification of electronic HW (microprocessor) designs involves automated or semi-
automated methods involving facility with formal logical-language processing, it could be aguedd 
that such design checking is a complex, specialist process whose technology goes way beyond that 
teachable in an undergraduate informatics course. However, one can also note that it is an essential 
part of modern informatics, even outside of chip manufacturers. Lower-complexity FPGA designs 
with dependability requirements (most of them) must also be verified, so one must use the available 
techniques, which all involve facility with use of a formal machine-manipulable description 
language with an unambiguous semantics. 

Software Dependability Assurance, Specifically

In the course of a project administered by the German electrotechnical standards organisation DKE 
on behalf of the German Federal Ministry for the Economy and Technology (BMWi) under the INS 
program, the author and Bernd Sieker have inquired into the necessity of various techniques for 
assuring the dependability of SW (Project INS 1234). The general theme of dependable SW and 
how to enhance dependability has been addressed by a US National Academy of Engineering 
inquiry, chaired by Professor Daniel Jackson, which reported in 2007 (Software for Dependable 
Systems: Sufficient Evidence? ed. Daniel Jackson, Martyn Thomas and Lynette I. Millett, 
Washington, D.C., National Academies Press, 2007). 

In the first part of the project INS 1234, I asked Martyn Thomas and Michael Jackson, originator of 
the highly-praised industrial SW development methods Jackson Structured Programming (JSP) and 
Jackson System Development (JSD) as well as the Problem Frames methods for SW requirements 
engineering, about crucial aspects of requirements specification and analysis for safety-critical 
software systems in general (safety is part of dependability according to the IFIP classification but 
not according to the IEC classification). 1

Both Thomas and Jackson suggest that checking requirements specifications for consistency is 
essential. In their experiences, requirements for moderately complex software systems are 
moderately prone to be inconsistent (the reason appears to be that various domain experts are 
required to help formulate system requirements, and the domain experts themselves remain unaware 
that properties they need may conflict with properties required by other domain experts. It requires 
a specialist in requirements engineering to help formulate all requirements in a uniform language 
which then may be manipulated to check for consistency). Consistency is evidently a notion of 
logic, and is meant here in exactly this way. Both Thomas and Jackson support formulation of 

1. Safety is part of dependability according to the IFIP classification but not according to the IEC 
classification. For the IFIP WG 10.4 definitions, see Dependability: Basic Concepts and 
Terminology, ed. J. C. Laprie, Springer-Verlag Wien, 1992, and Avižienis, A., Laprie, J.-C., 
Randell, B., and Landwehr, C., Basic Concepts and Taxonomy of Dependable and Secure 
Computing, IEEE Transactions on Dependable and Secure Computing, vol. 1, pp. 11-33, 2004. For 
the IEC definition, see   http://tc56.iec.ch/about/faq.htm . In particular, Section 5 of the FAQ 
explains that safety and security are not considered to be within scope. Definitions developed are in 
www.electropedia.org Part 191: Dependability and Quality of Service, but this section does not 
include a definition of “dependability” itself. The author understands that IEC definitions in the 
safety and security areas will eventually appear here, though. The author can speak from personal 
experience that the relation between the work of IEC Technical Committee, 56, which has 
responsibility for dependability, and those such as SC 65A concerned with E/E/PE system safety 
and security remains to be clarified.

http://www.electropedia.org/
http://tc56.iec.ch/about/faq.htm
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?&arnumber=1335465
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?&arnumber=1335465


requirements in some formal language with an unambiguous semantics, in order inter alia to allow 
consistency checking. This may proceed by hand, but preferably automatically or semi-
automatically to enhance the likelihood of correctness of the result. Such automatic checking may 
evidently only be performed on expressions in a formal language. (See Peter Bernard Ladkin and 
Bernd Sieker, Practical Formal Methods, work in progress under INS 1234, to appear 2014.)

There is also a need for checking whether requirements are (in the terminology preferred by the 
author) relatively complete. Although there is a logical notion of completeness, indeed the author 
has defined a such a notion applicable to system requirements, there are other notions of 
completeness which are not logical. Although ideally one would wish to check all such criteria, it is 
widely regarded as impractical to do so. Hence assessing relative completeness of requirements is 
not invariably associated with a facility with FOL or other logics. (See Ladkin & Sieker, op. cit.)

Numerous studies have shown that failures of dependability in dependability-critical SW may be 
assigned in a proportion of between 70% to over 90% to problems with the actual operational 
environment of the software not being thoroughly covered by the specification of the SW 
requirements, or other problems with the requirements (such as inconsistency). It follows that the 
adequate analysis of requirements is central to the enhancement of dependability of SW, and we 
have seen that a facility with a formal language with an unambiguous semantics, as well as tools to 
check logical properties, are essential skills for requirements analysis.

Most lay people seem to think that people with a university degree which includes informatics 
should be able to write computer programs, and that the computer programs they write should do 
what is intended, and should not cause harm. “What is intended” is captured by a requirements 
specification. Doing it is the property of reliability, part of dependability. Not causing harm is the 
property of safety, part of dependability (in the IFIP construal). We have just seen that a facility 
with logical languages is necessary to analyse requirements specifications for dependability 
properties. It follows that a facility with logical languages sufficient for this purpose is a skill which 
most lay people would expect informatics graduates to possess.

I consider the consideration in the preceding paragraph to be sufficient, alone, to establish the 
Thesis. The necessity of skill with syntactic variants of FOL for any study of contemporary 
database engineering is another observation in favor of the Thesis.

For those who wish to go in to industry, a facility in logic for both SW and HW dependability 
engineering seems unavoidable. For those who wish to pursue work in artificially cognitive 
systems, such as anthropomorphic robotics, some facility with modal logics sufficient to work with 
models of intention such as BDI currently seems at least very important if not necessary.

Further Work

A series of affidavits from system-dependability practitioners concerning their experience and the 
importance of logical understanding and associated techniques to their work is being prepared. 

Other selected university curricula show a clear requirement for facility with logic for success in the 
degree program. A summary of selected curricula is being prepared. 
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