CHAPTER 3

No Non-Trivial Poisson Process is at the Same Time a
Non-Trivial Bernoulli Process

At the time of writing, there is standardisation action to rewrite IEC 61508-7:2016
Annex D, “A probabilistic approach to determining software safety integrity for pre-
developed software”, because of misleading information which it contains. During the
course of this action, some participants have proposed connecting the mathematics
of Bernoulli Processes with those of Poisson Processes, because of mathematical
similarities: in some respects the mathematics of Poisson Processes is that obtained in
the limit if the number of Bernoulli trials N tends to infinity. I point out here what
experienced statistical practitioners already know, that you cannot connect the two
types of process deterministically. In contrast to the arguments used by statisticians,
the arguments here are purely structural, and therein lies any novelty they may have.

Consider a process of sequential trials as in a Bernoulli Process, but without the
condition that the probability of failure per trial is constant and not dependent on the
results of previous trials. Call this a Pseudobernoulli process. (It is a characterisation
of an on-demand process, but the term “on demand” carries intellectual baggage
which I would rather avoid here.)

3.1 Is Digital Control Fundamentally “Pseudobernoulli”?

There is also an argument which I have heard from various colleagues which says
that any digital system has fundamentally discrete operation, and any continuous
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process, such as that modelled by a Poisson Process, is implemented as a series of
very rapid discrete demands. Thus such a process represents also a rapidly repetitive
Pseudobernoulli Process represented by processor cycles or some abstraction of them.
There arises a suggestion that the two cases need not be distinguished; alternatively
that a Poisson Process is “really” a Pseudobernoulli Process in the digital world.
We shall see below that construing a Poisson Process as Pseudobernoulli does not
bring much if any intellectual leverage, and indeed seems likely to lead to loss of
information. Then we shall see that the Pseudobernoulli Process cannot be a Bernoulli
Process.

It is true that nominally-continuous real-world processes are often well approxi-
mated by rapidly-cycling digital discrete processes, otherwise digital computers would
not be so useful in system control. To react “continuously” to a parameter value, two
digital processes (or actions) are generally involved, which can be distinguished:

sampling a process samples the value (reads the sensor input) at high frequency
(hundreds to thousands to millions of Hertz, as necessary) and passes on those
values which need a control reaction to the control process;

control a control process inputs the values forwarded from the sample process which
need control reaction, calculates that control action and issues an appropriate
command to actuators which effect that control.

These two processes might well be implemented in the same piece of software code,
or they may be distinguished, depending on the control architecture. The control
action is an “on-demand” process: on a demand (generated by the forwarding action
of the sampling process) it calculates and issues a control reaction. As seen from
“outside” the implementation, the dynamic control process overall may well fit the
Poisson continuous Process model. This nominally-Poisson Process is implemented as
two actions, one of which, the control action, is on-demand. That on-demand action
would be appropriately modelled as a Pseudobernoulli Process. So far so good. One
may investigate the mathematical connection between the “outside view” Poisson
Process and the Pseudobernoulli process, the control action. One can attempt to
relate the Pseudobernoulli demands on the control action to the time at which those
demands occur. This is called a process in statistics, and I shall call it SP1 for historical
reasons. The question is

* whether SP1 is in some sense deterministic, in which case explicit mathematics
can possibly relate the Pseudobernoulli Process constituted by the control action
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to the Poisson Process approximated by the sample and control actions;
* or whether SP1 is generally stochastic.

In the first case, we would have a functional relationship between the Pseu-
dobernoulli Process of the control action and the Poisson Process represented by
the “outside view”. Intuitively, SP1 is a process that reacts to parameters which derive
from features in the world changing values over a threshold sufficient for the sample
action to pass those values to the control action. We might well expect that the
general nature of such a process is stochastic rather than functional.

3.2 A Poisson Process as Pseudobernoulli

Suppose a given process P has outcomes 0 or 1, or, as they are usually called for these
processes, Failure and Success. Suppose also that we wish to consider this process
under two different models, as a Poisson Process and as a Pseudobernoulli Process.

P as a Pseudobernoulli Process has
1. a parameter n = the number of trials, and
2. an outcome of Success or Failure per trial.

As described, a Pseudobernoulli process is not a stochastic process. There are no
stochastic parameters associated with it. It has been defined purely structurally. Were
P to be a Bernoulli Process, it would also fulfil the condition that

* there is a fixed probability p that a given trial will end in Failure.

This is of course a stochastic condition. We shall see later that this condition cannot
coherently be superimposed on a Pseudobernoulli Process arising from a Poisson
Process.

I denote the result of trial ¢ in a Pseudobernoulli Process by OutcomeB(t).
OutcomeB is thus a function from the set of trials to { Success, Failure}. For a Bernoulli
Process, it is important to note that the probability of outcome of the next trial, p of
Failure and (1 — p) of Success, is independent of any result of any previous trial: a
Bernoulli Process is said to be memoryless.

P as a Poisson Process has
1. a parameter ¢ = elapsed time,

2. a probability ¢(t;) that there will be a Failure outcome in the next time interval
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T; of length ¢; (that is, the probability of failure in T'; is solely dependent upon
its length, a property which is also called memoryless-ness),

3. an outcome function OutcomeP(t) in which OutcomeP(t) = Success when
OutcomeP(t) # Failure, and in which the set

FAIL = {t : OutcomeP(t) = Failure}

is a collection of left-closed right-open intervals. Each interval represents an
initial point of failure, the left point, and a time to repair, namely the length
of the interval; the absent right point represents the time at which success
recommenced. We shall abide by the convention that OutcomeP(0) = Success.

Extended models consider also the lengths of these intervals, yielding various param-
eters concerned with time to repair. These will not concern us. The mathematics of
memoryless-ness is also more precise, but the details also need not concern us.

It follows from the fact that the set FAIL is a collection of left-closed right-open
intervals, and the observation that OutcomeP(t) = Success when OutcomeP(t) #
Failure, that the set

SUCCEED = {t : OutcomeP(t) = Success}

is also a collection of left-closed, right-open intervals. I shall speak of a time point ¢
being “in an interval in” SUCCEED or FAIL,and mean by that just ¢t € SUCCEED,
respectively t € FAIL.

Considering P as a Pseudobernoulli Process means that there is no time parameter.
But there is a time parameter when P is considered as a Poisson Process. We can
reconcile these two models by considering n (= number of Pseudobernoulli trials)
to be a function k(t) of time. We can take k(¢) to be the number of Pseudobernoulli
trials which have taken place up to and including time ¢. Observe that k(¢) is a
monotonically increasing integer function of ¢. Indeed, a monotonically incrementing
integer function of ¢. We abide without loss of generality by the convention that
k(0) = 0.

The Pseudobernoulli outcome function OutcomeB is also a discrete function. To
turn it into a continuous function of time, we may define Outcomep(t) to be the
real-time function OutcomeB(k(t)).
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3.3 Co-Interpretation

There is a straightforward way in which the Pseudobernoulli parameters and Poisson
parameters for P can be structurally reconciled. Each interval in SUCCEED and in
FAIL is left-closed. At each point of

SuccessPoints = {t : t is the left end—point of an interval in SUCCEED}

we could consider a Pseudobernoulli trial to have been performed with outcome
Success. Similarly, at each point of

FailPoints = {t : t is the left end—point of an interval in FAIL}

we could consider a Pseudobernoulli trial to have been performed with outcome
Fuailure. It is easy to see that a specific discrete process is defined by this interpretation,
namely one in which Outcomes strictly alternate:

Outcomep(t) = Failure when k(t) is odd
Outcomep(t) = Success when k(t) is even

This is not a stochastic process. There is no non-trivial probability of failure
associated with the next trial. The failure is functional on the previous trial: the
probability of the next trial being a failure is 0 in the case that the previous trial
resulted in Fuailure, and it is 1 in the case that the previous trial resulted in Success.
It is also apparent from this that this process is not memoryless (in the stochastic
sense): the result of the next trial is functionally dependent upon the result of the last
trial. This Pseudobernoulli process is not stochastic; in particular it is not a Bernoulli
Process. And it is a minimal Pseudobernoulli Process. Here is an example of what I
mean. Consider the Pseudobernoulli Process taking place over the time interval [0, 7]

Trial(1) takes place at time ¢; and results in Success

Trial(2) takes place at time ¢5 and results in Success
Trial(3) takes place at time ¢3 and results in Failure

Trial(4) takes place at time ¢4 and results in Success

)
)
(4)
()

5) takes place at time ¢5 and results in Failure
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Trial(6) takes place at time ¢ and results in Success
Trial(7) takes place at time ¢7 and results in Success
Trial(8) takes place at time ¢g and results in Failure

Then
SUCCEED = [O,tg) U [t4,t5) U [tﬁ,tg)

FAIL = [tg,t4) U [t5,t6) U [tg,T]

and of course
SUCCEED U FAIL = [0,T)

Successpoints = {t1,t4, ts}
Failpoints = {ts, t5, tg}
Pseudobernoulli trials 2 and 7, at times ¢, and ¢; respectively, have disappeared. The

Pseudobernoulli Process resulting from the structural reconstruction given above is
just

Trial(1) takes place at time ¢; and results in Success

Trial(3) takes place at time t3 and results in Failure

Trial(4) takes place at time ¢, and results in Success

(3)

(4)
Trial(5) takes place at time ¢5 and results in Failure
Trial(6) takes place at time ¢ and results in Success
(8)

Trial(8) takes place at time tg and results in Fuailure

So yes, we can identify a Pseudobernoulli Process given a Poisson Process (and
when we have reason to believe that a Pseudobernoulli Process underlies the Poisson
Process), but this reconstruction may miss some Pseudobernoulli trials. If we were
to write the trial results as a sequence of 0’s (for Fuailure) and 1’s (for Success),
then the original sequence is 11010110 and the reconstructed sequence 101010. The
reconstruction as above will always result in an alternating sequence. So we cannot
identify a “real” Pseudobernoulli Process underlying a given Poisson Process by being
given the Poisson Process; just part of it.
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3.4 Characterisation of Joint Processes

Now let us look at the stochastic conditions. The probability of failure is given for
the next time interval 7 in a Poisson process P by ¢(length(T')). We can identify a
Pseudobernoulli Process congruent with P as a Poisson process if we have reason
to believe that one underlies P, but this Pseudobernoulli Process will be minimal -
there might well be trials missing (and generally will be). But suppose we are given a
Pseudobernoulli Process underlying P. Can this Pseudobernoulli Process actually be a
Bernoulli Process? We shall see that the answer is no.

Let us assume that P is a Poisson Process and that P is also modelling by a Pseu-
dobernoulli Process that is in fact Bernoulli; that is, there is a probability of failure for
each trial, this is p, and p is constant, and the trials are memoryless. Let us assume
p # 0 and p # 1. We shall derive a contradiction.

The quantities ¢(length(7T)) and p are both probabilities of failure. One is per-
time-interval-length, one is per trial. They both represent the same quantity, the
probability of failure, but they are differently parametrised. Without loss of generality,
take a length of time [0, ¢4,4] long enough that ¢(¢4,.) > p and let T be a time
interval inside [0, T fina] such that g(length(Tq)) = p. Then length(T) is the length
of a time interval in which the probability of failure is that of exactly one Bernoulli
trial. Indeed, this will be so for any interval 7" for which length(T) = length(Ty), by
memoryless-ness. Let us denote length(Ty) by Ly.

Suppose no Bernoulli trials would be deemed to take place within T'y. Then the
probability of failure in 7o would be 0, but we have assumed it is p and p # 0. That
would be a contradiction. It follows that it cannot be the case that no Bernoulli trials
are deemed to take place within T.

Suppose we were to deem two Bernoulli trials to take place in T'y. The probability
of double failure in T, ¢(To), would then be p? by the memoryless property of
Bernoulli processes. But we have assumed ¢(Tg) = p, and p # 1 and thus p? # p.
q(To) cannot be equal to both p? and p; that would be a contradiction. It follows
that it cannot be the case that two Bernoulli trials are deemed to take place within
Ty. Similar reasoning shows that three or more Bernoulli trials cannot be deemed to
take place in T'y.

Thus for T of length L and ¢(7T') = p, where p is not 0 or 1, it follows that exactly
one Bernoulli trial must be deemed to take place in the next L period of time. This



44 3 No Non-Trivial Poisson Process is at the Same Time a Non-Trivial Bernoulli Process

constrains the joint interpretation, as we shall see, impossibly strongly.

The OutcomeP function of P as a Poisson Process and the Outcomep function are
functions giving the outcome (Success or Failure) of P as a Poisson process and P as
a Bernoulli process respectively. Each function must either remain constant through
the next time period T of length L), or change value precisely once. Hence P as a
Poisson process is a process for which, within any time interval 7" of length L, there
is either one failure with probability p = ¢(7T') or no failure (with probability (1 — p)).

Let us introduce the notation ProbFuail(z) to denote the probability of failure of P
at some time in z, where z is a time interval. Consider any interval 7' of length Lj.
By the memoryless property, for failure behaviour it suffices to consider the interval
[0,Lp]. We have shown that there can be at most one failure in this interval. Suppose
there is a failure , and it occurs at time S < Ly. It follows that ProbFail((S, Lo]) is 0,
and, by subtracting S from both endpoints, it follows that ProbFail((0, (Lo — S)]) is
also 0 by the memoryless property. Since there is not a failure at ¢t = 0 (by hypothesis),
it follows that

ProbFail(]0, (Lo — S)]) = ProbFail(]0,0]) + ProbFail((0, (Lo — S)]) =0+0=0
It further follows that
ProbFail(((Lo — S), Lo]) = 0+ ProbFail(((Lo — S), Lo))

= ProbFail([0, (Lo — S)]) + ProbFail(((Lo — S), Lo))
= ProbFail([0,Lo]) = p

Taking (Lo — S) away from both endpoints of ((Ly — 5), Ly] yields the interval (0, S].
So, again by the memoryless property,

ProbFail((0, S]) = ProbFail(((Ly — S), Lo]) = p
There is never a failure at ¢ = 0 by hypothesis, so ProbFail(]0,0]) = 0, and
ProbFail([0, S]) = ProbFail(0) + ProbFail((0,S]) =0+p=1p

Since the probability of failure in the interval [0, (Lo — S)] is 0, and the probability
of failure in the interval [0, S] is p, and we are assuming p # 0, it follows that
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S > (Ly — S), that is, that S > %Lo. In other words, any failure must occur in the
second half of any interval T of length L. It follows that

1
ProbFail(|0, ELOD =0
and

1
Pmeail((§L0, Lol) =1p

Again, by memoryless-ness, taking %LO away from both endpoints,

1 1
ProbFail([§L0, Ly]) = ProbFail([0, iLO]) =0
However,
o1 1 1
ProbFazl([iLo, Lo)) = ProbFazl(§L0) + ProbFazl((iLo, Lo))=0+p=p

But it cannot be both 0 and p, because p # 0. This is a contradiction.

We have shown by reductio ad absurdum that a Poisson process P cannot also be
taken to exhibit Bernoulli trials with probability of failure p where p has any value
except 0 or 1. A value of p equal to 0 or 1 yields a trivial Bernoulli Process.

It follows that, although a Poisson Process can be taken to exhibit a Pseudobernoulli
Process, such a process can not be a (non-trivial) Bernoulli Process.

3.5 Conclusion

Consider process P to be interpreted as a Poisson Process. If there is reason to
think that a Pseudobernoulli Process underlies P, then part of this process may be
reconstructed structurally from P, but not necessarily all of it - the reconstructed part
will show alternating successes and failures, but consecutive successes and failures
will have disappeared. Furthermore, if there is a Pseudobernoulli Process underlying
the Poisson Process, this cannot be at the same time a Bernoulli Process except in
unenlightening cases.



